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Abstract. The highway pricing problem asks for prices to be de-
termined for segments of a single highway such as to maximize the
revenue obtainable from a given set of customers with known valuations.
The problem is NP-hard and a recent quasi-PTAS suggests that a
PTAS might be in reach. Yet, so far it has resisted any attempt for
constant-factor approximation algorithms. We relate the tractability of
the problem to structural properties of customers’ valuations. We show
that the problem becomes NP-hard as soon as the average valuations of
customers are not homogeneous, even under further restrictions such as
monotonicity. Moreover, we derive an efficient approximation algorithm,
parameterized along the inhomogeneity of customers’ valuations.
Finally, we discuss extensions of our results that go beyond the highway
pricing problem.

Keywords: Pricing problems, highway pricing problem, computational
complexity, approximation algorithm.

1 Introduction

We consider the highway pricing problem, introduced by Guruswami et al. [9].
The problem is motivated by determining revenue-maximizing tolls to be charged
for segments of a highway. The highway is thought of as a simple path, and
capacity is considered unlimited. There are potential customers, each of them
requesting to travel a sub-path of the highway, and the maximal valuation for
utilizing the requested sub-path is considered public knowledge. The objective
is to find prices to be charged for the segments of the highway so as to maximize
the total revenue obtained by the customers.

More formally, let I = {1, . . . , m} represent the highway segments, and regard
them as consecutive edges on a simple path. Let J = {1, . . . , n} denote the set of
potential customers. Every customer j ∈ J requests a sub-path of the highway,
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denoted Ij ⊆ I, and we assume that each Ij is of the form Ij = {k, k +1, . . . , �},
k ≤ �. The valuation vj for traveling sub-path Ij is publicly known. This is quite
reasonable when assuming that the valuation is a monetary expression for the
time saving that can be realized by using the highway instead of the next-fastest
alternative route. We assume vj > 0, for otherwise that customer can be deleted
from the instance. Given a vector of prices p = (p1, . . . , pm), containing one price
for each highway segment, denote by W = {j ∈ J | ∑

i∈Ij
pi ≤ vj} the set of

winners.

Definition 1. The highway pricing problem asks for a vector of prices
(p1, . . . , pm), one for each segment of the highway, such that the total revenue∑

j∈W

∑
i∈Ij

pi extracted from the set W of winners is maximal.

1.1 Related Work

The complexity of the highway problem was left open in [9], but it was shown
weakly NP-hard by Briest and Krysta [2]. A more recent paper claims strong
NP-hardness [4]. Guruswami et al. [9] propose a polynomial time dynamic pro-
gramming algorithmwhen the valuations are boundedby a constant, and a pseudo-
polynomial time dynamic programming algorithm when the lengths of the
sub-paths are bounded by a constant. Note that the problem can be interpreted as
a bilevel linear program,and if either the price vector or the set ofwinners is known,
the problem is polynomially solvable [7,9], even under the requirement of integral
prices. Balcan and Blum [1] derive an O(log m)-approximation algorithm for the
highwayproblem, improving upon the previous O(log m+log n)-approximation of
Guruswami et al. [9], where m is the number of highway segments and n is the num-
ber of customers.Under themonotonicity condition that the total price of any given
path is no more than the total price of a longer path, Grigoriev et al. [8] show that
a O(log B)-approximation exists, where B is an upper bound on the valuations.
Furthermore, Grigoriev et al. [7] derive an FPTAS, assuming that the maximum
capacity of any segment of the highway is bounded by a constant. Finally, Elbas-
sioni et al. [5] present a quasi-polynomial time approximation scheme for both the
capacitated and uncapacitated version of the problem, thereby suggesting that a
PTAS is likely to exist.

1.2 Motivation and Results

Intrigued by the gap between NP-hardness on the one hand, and only logarithmic
polynomial-time approximation algorithms on the other hand, in this paper we
interpret customers’ valuations in such a way that we come a step closer towards
understanding this complexity gap. To start with, let us make the following
definition, illustrated also by Example 1 below.

Definition 2 (Inhomogeneity of valuations). For any instance of the high-
way pricing problem, define v̄j = vj/|Ij | as the average (per segment) valuation
of customer j, and define the inhomogeneity of valuations as

α = max
j,k∈J

{
v̄j

v̄k

}

.
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Example 1. Figure 1 shows an example with three segments, I = {1, 2, 3}, and
six customer requests J = {1, . . . , 6}. The left part of this figure shows the
underlying highway with its alternative roads and distances, and the right part
shows the corresponding instance of the highway problem. The valuation for
traveling from the start of segment k until the end of segment � is denoted vk,�.
This instance has inhomogeneity α = 2; comparing the valuations for {1, 2, 3}
and {2}.

7

v1,1 = 7
v2,2 = 10
v3,3 = 8
v1,2 = 12
v2,3 = 14
v1,3 = 15

15

14

10 8

12

Fig. 1. An instance of the highway pricing problem

Notice that α ≥ 1, and that the problem becomes trivial as soon as the
valuations are homogeneous (that is, α = 1), since this corresponds to the case
where all customers’ valuations per segment are identical; see Section 2.

Our first result is to show that, in contrast to the trivially solvable homoge-
neous case, the problem with inhomogeneity of valuations is (weakly) NP-hard.
While this does not sound very surprising, the main point is that this NP-
hardness result holds even if the inhomogeneity α is bounded from above by
any constant 1 + ε. In some sense, we thereby delineate the borderline between
triviality and NP-hardness for the highway pricing problem.

Furthermore, the NP-hardness result remains true even if we impose further
restrictions on customers’ valuations, such as monotonicity, that is,

vj ≤ vk for all Ij ⊆ Ik ,

and monotonicity of average valuations, that is,
vj

|Ij | ≥ (≤, resp.)
vk

|Ik| for all Ij ⊆ Ik .

Our second result is a parametric approximation algorithm for the highway pric-
ing problem that complements the NP-hardness result. The proposed algorithm
has performance guarantee O(log α) and computation time O(n(log n + m)),
where the constant hidden in the O-notation of the performance bound is not
more than e. More specifically, it is easy to see that an α-approximation exists,
and for large values of α we show how to improve this bound to 1 + lnα + ε for
any ε > 0. Notice that this is a constant-factor approximation algorithm as soon
as the inhomogeneity α of customers’ valuations is bounded by some constant.
We believe that such a constant bound is not unreasonable in practical appli-
cations, and note that α ≤ m for the case of monotone and decreasing average
valuations.
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Finally, we briefly comment on the fact that the O(log α) approximation result
even holds for the more general bundle pricing problem where customers are
interested in arbitrary bundles instead of sub-paths only. In this context, notice
that if there exists any constant upper bound on the inhomogeneity α then the
semi-logarithmic inapproximability result of Demaine et al. [3] for that problem is
not longer valid. For that problem we also derive a (strong) NP-hardness result,
again for any constant upper bound on the inhomogeneity of the valuations.

2 Complexity of the Highway Problem with
Inhomogeneous Valuations

We start with the short argument that the highway problem with homogeneous
average valuations is trivially solvable: consider the average valuation v̄, which
is, by homogeneity, the same for each customer, and define the price pi = v̄ for
every segment i ∈ I. Clearly, each customer contributes her entire valuation to
the revenue, and the obtained solution is optimal.

Surprisingly enough, even if we allow only arbitrarily small deviations of ho-
mogeneous valuations, the highway problem becomes intractable. The following
theorem shows that the problem with inhomogeneous valuations remains NP-
hard even in further restricted settings.

Theorem 1. The highway problem is NP-hard even when restricted to the in-
stances satisfying the following conditions:

1. the inhomogeneity α ≤ 1 + ε where ε is an arbitrary positive constant;
2. customers valuations are monotone, i.e., vj ≤ vk for any j, k ∈ J such that

Ij ⊆ Ik;
3. customers average valuations are monotone decreasing, i.e., v̄k ≤ v̄j for any

j, k ∈ J such that Ij ⊆ Ik.

Proof. The reduction is from the Partition problem, and extends an idea by
Briest and Krysta [2]. Partition: Given integers a1, . . . , a2L and A, does there
exist a set S ⊆ {1, . . . , 2L} such that

∑
�∈S a� =

∑
�/∈S a� = A? This problem is

known to be NP-hard, even under the additional restriction that |S| = L; see [6].
We may assume that L > 3/ε, for otherwise Partition is solvable in polynomial
time. Without loss of generality, we also assume that 0 ≤ a1 ≤ . . . ≤ a2L and
a� ≤ A for all � = 1, . . . , 2L. Let a′

� = a� + (4L + 2)A for all � = 1, . . . , 2L, and
A′ = (4L2 + 2L + 1)A. Note that

∑2L
�=1 a′

� = 2A′.
We now create an instance H of the highway problem with 7L + 3 segments

combined in gadgets. Gadget � = 1, . . . , 2L contains two segments, i = 2� − 1
and i = 2�. Each of these two segments are requested by 2L− 1 customers with
valuation a′

�. The combination of two segments, 2� − 1 and 2�, is requested by
one customer with valuation (2 − 1

L )a′
�. Finally, gadget 2L + 1 contains 3L + 3

segments, where the first three segments, 4L+1, 4L+2, 4L+3, are requested by
one customer with valuation 12

4L+3A′ and the last 3L segments, 4L+4, . . . , 7L+3,
are requested by 3 customers with valuation 12L

4L+3A′. All segments in gadget
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1 2
Gadget 1

a′
1 a′

1

(2 − 1
L )a′

1

4L 4L + 1
Gadget 2L

a′
2L

(2 − 1
L )a′

2L

4L + 3 4L + 4
Gadget 2L + 1

12
4L+3A′ 12L

4L+3A′a′
2L

7L + 3

(4 − 1
L )A′

d = 2L − 1 d = 3

d = 3d = 1d = 1

d = 1

d = 1d = 2L − 1 d = 2L − 1d = 2L − 1

4L − 1

12L
4L+3A′

4L + 2

Fig. 2. Instance H

2L + 1 are also requested by 3 customers with valuation 12L
4L+3A′. There is one

big customer, who requests the first 4L + 3 items with valuation (4 − 1
L )A′.

Instance H is displayed in Figure 2, where the number of customers interested
in a sub-path is presented by d.

Though it requires a quite extensive case study, one can straightforwardly
verify that conditions (1)-(3) of Theorem 1 are satisfied. For the first condition,
we have that α = 1 + O(1/L) implying that it can be upper bounded by 1 + ε
where ε is any positive constant.

Now we claim that there exists a feasible solution to Partition if and only
if there is a feasible solution to instance H of the highway problem with a total
revenue of at least

(
8L + 72L

4L+3 − 1
L

)
A′.

(⇒) Given a set S ⊆ {1, . . . , 2L} such that
∑

�∈S a� =
∑

�/∈S a� = A and |S| = L.
For all � ∈ {1, . . . , 2L}, let p2�−1 = p2� = a′

� if � ∈ S and p2�−1 = p2� = (1− 1
2L )a′

�

if � /∈ S. Furthermore, we set p4L+1 = . . . = p7L+2 = 0 and p7L+3 = 12L
4L+3A′.

Applying this price vector, the revenue without contribution of the big customer
is equal to (4L−2)a′

� in each gadget � = 1, . . . , 2L. The big customer contributes
her entire valuation (4− 1

L)A′. In gadget 2L+1, the customer requesting segments
4L + 1, 4L + 2, 4L +3 gets this path for free. The other customers in this gadget
contribute their respective valuations. The total revenue generated with this
pricing vector equals

(4L − 2)
2L∑

�=1

a′
� +

(

4 − 1
L

)

A′ + 6 · 12L

4L + 3
A′ =

(

8L +
72L

4L + 3
− 1

L

)

A′.

(⇐) Given is an optimal solution to instance H with a total revenue at least
(8L + 72L

4L+3 − 1
L)A′. First, we observe that in such optimal solution, segments

4L + 1, 4L + 2, 4L + 3 are necessarily priced to 0 and the total price of the
remaining segments in gadget 2L+1 is 12L

4L+3A′, yielding revenue 72L
4L+3A′. To see

this, we notice that the total demand on the first three segments in this gadget
is 5 and on the latter 3L segments the demand is 6. Therefore, if the total price
on the first three segments of gadget 2L+1 is 0 < x ≤ 12

4L+3A′, the total revenue
obtained in the gadget is at most 72L

4L+3 − x, that is, we receive x from the big
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customer and at most x + 3( 12L
4L+3A′ − x) + 3( 12L

4L+3A′) from the customers in
gadget 2L+1. The above suggested pricing does not decrease revenue generated
in gadgets 1, . . . , 2L, and generates the total revenue in gadget 2L + 1 equal
to 72L

4L+3 .
Second, in the optimal solution to the highway problem, there could be only

two alternative pricing strategies in gadgets � = 1, . . . , 2L: either p2�−1 = p2� =
a′

� or p2�−1 + p2� = (2 − 1
L)a′

�, where both prices do not exceed a′
�. In both

realizations, the contribution of the gadget (without big customer) to the total
revenue is (4L − 2)a′

�. Therefore, in the optimal solution to instance H with
revenue at least (8L+ 72L

4L+3 − 1
L)A′, the big customer must contribute her entire

valuation. This amount is to be spent in the first 4L segments as the price of
segments 4L + 1, 4L + 2 and 4L + 3 is set to 0.

Define set S = {� ∈ {1, . . . , 2L} : p2�−1 = p2� = a′
�}. The payment of the big

customer is
∑

�∈S 2a′
� +

∑
�/∈S(2 − 1/L)a′

�. As this must be equal to the valua-
tion of the big customer, we have

∑
�∈S a′

� =
∑

�/∈S a′
� = A′ and consequently,∑

�∈S a� =
∑

�/∈S a� = A. �	

3 O(log α)-Approximation Algorithm

The idea for the approximation algorithm is as follows. We partition the set
of customers J into O(ln α) subsets S1, . . . , SK , such that in each subset any
two customers have average valuations different from each other by at most
a constant factor δ > 1. Denote by Πk the maximum revenue for the highway
problem restricted to the set of customers Sk (referred to as Sk-restricted prob-
lem). Then

∑K
k=1 Πk is clearly an upper bound for the optimum Π of the original

problem. Therefore, the highest maximum revenue maxk=1,...,K Πk over all re-
stricted problems is at least Π/K. Next, from the fact that the inhomogeneity
of the average valuations in Sk is bounded by at most factor of δ, we derive
that for the Sk-restricted problem there exists a price vector generating revenue
at least Πk/δ. Thus, taking the pricing vector yielding the highest revenue over
all restricted problems, we generate a total revenue at least Π/δK. Finally, we
optimize the performance guarantee over parameters K and δ.

To partition the set of customers J into subsets S1, . . . , SK , we use the follow-
ing recursive procedure running in K steps. At step k = 1, . . . , K, we construct
subset Sk. Consider the set of customers Jk not yet assigned to any of the sub-
sets S1, . . . , Sk−1, assuming J1 = J . Add all customers j ∈ Jk to Sk for which
v̄j ≤ δkv̄min, where v̄min = minj∈J{v̄j} and δ > 1 to be defined later. Set
Jk+1 = Jk \ Sk and recurse on this set.

By definition of the inhomogeneity α, we have v̄k ≤ αv̄j for every pair of
customers k, j ∈ J . Then, by straightforward induction on k, one can prove that
the ratio between the highest and the lowest average valuations in Jk is at most
α/δk−1, yielding K ≤ 1 + logδ α = 1 + lnα/ ln δ. Thus, we derived the first
ingredient of the approximation algorithm, formulated in the following lemma.

Lemma 1. For any δ > 1 the number of subsets K is at most 1 + lnα/ ln δ.



On the Complexity of the Highway Pricing Problem 471

Second, we show that there is a solution to the Sk-restricted problem such that
(i) the set of winners W = Sk; and (ii) the revenue generated in this solution
is at least Πk/δ. Consider the pricing vector pk = (pk

1 , . . . , pk
m) where price pk

i

of segment i ∈ I is determined as follows. Let Sik ⊆ Sk be the set of customers
requesting segment i. If Sik = ∅, then price pk

i can be chosen arbitrarily. If
Sik �= ∅, define pk

i = min{v̄j | j ∈ Sik}. Now, consider a customer j ∈ Sk. By
definition of price vector pk, the price of sub-path Ij is

∑
i∈Ij

pk
i ≤ ∑

i∈Ij
v̄j = vj ,

and therefore j ∈ W . By definition of set Sk, maxj∈Sk
v̄j/ minj∈Sk

v̄j ≤ δ, that
yields the revenue of the solution is at least Πk/δ. Thus, we proved the following
lemma.

Lemma 2. In the Sk-restricted problem, price vector pk yields a revenue at
least Πk/δ.

Clearly, the combination of Lemma 1 and Lemma 2 immediately implies that
the total revenue generated by the best price vector p∗ from {pk| k = 1, . . . , K}
is at least Π/δ(1 + lnα

ln δ ), which is maximized for δ = e

(
1
2+

√
1
4+ 1

ln α

)−1

. Notice
that for big α the value of δ is close to e. Therefore, we have the following result.

Theorem 2. Price vector p∗ yields a total revenue at least Π/(e lnα + e) for
the highway problem, where Π is the maximal revenue, and it can be computed
in O(n(log n + m)) time.

We arrive at the computation time as follows. First, we order the customers
according to their average valuation (increasingly), which takes O(n log n) time.
Then, for all k = 1, . . . , K, we use binary search to create set Sk in O(log n) time,
and for all items i = 1, . . . , m we determine the set of customers that request
the item in O(n) time, and the item price and the revenue in constant time. So,
the total runtime is O(n log n + K(logn + nm)), which is in O(n(log n + m)), as
K is a constant.

There are several directions for improvement of the obtained approximate
solution to the highway problem. First, instead of the constructed price vec-
tors pk, k = 1, . . . , K, we can use price vectors maximizing the revenue in
the Sk-restricted problems, with given set of winners W = Sk. Notice that, for
any set of winners W ⊆ J , the price vector maximizing the revenue obtained
from W can be found in polynomial time by solving a simple linear program;
see [7,9]. Unfortunately, this approach does not necessarily lead to any provable
improvement of the performance guarantee.

The second approach allows us to improve the performance guarantee, and is
based on more careful analysis of the revenue generated by price vector p∗ when
applied to the entire set J instead of Sk only. By construction of the partition of
J , for any two subsets Sk and Sk′ , k ≤ k′, the average valuation of any customer
from Sk is at most the average valuation of a customer from Sk′ . Therefore, for
any k = 1, . . . , K, and for all k′ ≥ k, if Sk ⊆ W , then Sk′ ⊆ W as well. By
definition of the subsets, the maximum average valuation in set Sk+1 is at most
δ times the maximum average valuation in set Sk. Thus, we have that the revenue
generated by price vector pk applied to the set of customers J is at least
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Rk =
1
δ
Πk +

1
δ2

Πk+1 + . . . +
1

δK−k+1
ΠK , ∀k = 1, . . . , K.

These equalities can be equivalently represented by the following recurrent
formulas

Rk =
1
δ
Πk +

1
δ
Rk+1, ∀k = 1, . . . , K − 1, (1)

with an additional equality

RK =
1
δ
ΠK . (2)

Summing up all Equations (1) and (2) and dividing both sides by K, we derive

R̄ =
1
K

K∑

k=1

Rk =
1

Kδ

K∑

k=1

Πk +
1

Kδ

K∑

k=1

Rk − 1
Kδ

R1.

Let R1 = φR̄. Since
∑K

k=1 Πk ≥ Π , we derive

R̄ ≥ Π

K(δ − 1) + φ
.

Taking the maximum revenue over all price vectors pk, k = 1, . . . , K, we obtain

max
k=1,...,K

Rk ≥ max{R1, R̄} ≥ max
{

φΠ

K(δ − 1) + φ
,

Π

K(δ − 1) + φ

}

,

that is minimized with φ = 1, yielding

max
k=1,...,K

Rk ≥ Π

δ(1 + ln α
ln δ ) − lnα

ln δ

.

Clearly, price vector p∗ yields a total revenue at least Π/(δ(1+ ln α
ln δ )− lnα

ln δ ). Note
that δ(1 + ln α

ln δ ) − lnα
ln δ < δ ln α + δ. Given ε > 0, let δ = 1 + ε/(lnα + 1). Then,

δ ln α + δ =
(

1 +
ε

ln α + 1

)

ln α +
(

1 +
ε

ln α + 1

)

= 1 + ln α + ε,

and we arrive at the following theorem.

Theorem 3 (Improved Bound). Price vector p∗ yields a total revenue at least
Π/(1 + lnα + ε) for the highway problem for any ε > 0, and it can be computed
in O(n(log n + m)) time.

4 General Bundle Pricing

As a matter of fact, in all arguments developed in the previous sections, we did
not make use of the fact that the subsets Ij requested by customers are sub-paths
of a path. Hence, the results hold for the more general bundle pricing problem
where customers request arbitrary subsets of a given set of items, each of which
available in unlimited supply (digital goods, for example). This problem is in
general known to be inapproximable by a semi-logarithmic factor in the number
of customers n [3]. This inapproximablity result is no longer valid as soon as the
inhomogeneity is bounded by a constant, since we have:
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Corollary 1. Given ε > 0, the bundle pricing problem admits an approximation
algorithm that yields a revenue at least (1+lnα+ε)−1 times the optimal revenue,
with computation time O(n(log n + m)).

For this problem, we can even derive a stronger negative result than for the more
restrictive highway pricing problem.

Theorem 4. The bundle pricing problem is strongly NP-hard, even when re-
stricted to the instances satisfying the following conditions:

1. the inhomogeneity α ≤ 1 + ε where ε is an arbitrary positive constant;
2. customers valuations are monotone, i.e., vj ≤ vk for any j, k ∈ J such that

Ij ⊆ Ik;
3. customers average valuations are monotone decreasing, i.e., v̄k ≤ v̄j for any

j, k ∈ J such that Ij ⊆ Ik.

Proof. We show that the bundle pricing problem is strongly NP-hard by using
a reduction from the strongly NP-hard problem IndependentSet [6]. Given
a graph G = (V, E) and integer s ≤ |V |. Does there exist a set of vertices that
are pairwise non-adjacent with cardinality at least s. We define an instance I of
the pricing problem as follows. Given an ε > 0, let M > max{1/ε, s + 1/2}. For
every vertex v ∈ V we create two vertex-items, v1 and v2, and for every edge
e ∈ E we introduce two edge-items, e1 and e2. Every vertex- and edge-item is
requested by 2M2 + 2M − 1 customers with valuation M + 1. For every vertex
v ∈ V , there is one customer interested in bundle {v1, v2} and similarly, for every
edge e ∈ E, there is one customer interested in bundle {e1, e2}. These customers
have valuation 2M + 2 − 1/M . There is one customer interested in item x with
valuation M + 1, and there are 2 customers interested in bundle y of size M
with valuation M2. Also, there are two customers requesting bundle {x, y} (of
size M + 1) with valuation M2 + M . Then, for every edge e = {u, v} ∈ E, there
is one customer interested in bundle {u1, u2, v1, v2, e1, e2} ∪ {x} with valuation
7M+6−2/M . One customer requests all vertex items and item x, that is, bundle
{v1, v2 : v ∈ V } ∪ {x}, with valuation (2M + 2 − 1/M)|V | + M + (1/M)s. The
instance is displayed in Figure 3.

Let us give a short intuition as to why we need these particular bundles.
The bundles on the vertex- and edge-items determine which vertices are in the
independent set of G and bundles {u1, u2, v1, v2, e1, e2} ∪ {x} assure later that
a feasible solution to the general bundle pricing problem corresponds to an inde-
pendent set in G. Bundle {v1, v2 : v ∈ V }∪{x} assures that a feasible solution to
the pricing problem corresponds to an independent set of cardinality s. Finally,
bundles {x}, {y} and {x, y} are present to fulfill the conditions required in this
theorem.

The single-item bundles have the largest average valuation of M +1, and bun-
dles {y} and {x, y} have the smallest average valuation of M , thus α = 1+1/M <
1+ε. Though it requires an extensive case study, one can straightforwardly verify
that conditions (2) and (3) are also satisfied.

We define πi as the revenue obtained from the customers requesting a bundle
from set {i1, i2, {i1, i2}} for all i ∈ I = V ∪E. We define πe as the revenue from
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Fig. 3. An instance of the bundle pricing problem created from original graph G above

the customers requesting {u1, u2, v1, v2, e1, e2}∪{x} for some e = {u, v} ∈ E.
We define πxy as the revenue received from customers requesting a bundle
from set {x, y, {x, y}}, and finally, πV represents the revenue obtained from
the customer requesting {v1, v2 : v ∈ V } ∪ {x}. Obviously, the total revenue
is π =

∑
i∈I πi +

∑
e∈E πe + πxy + πV . Also, let C be a constant equal to

(|V |+ |E|)(4M3 +8M2 +2M −2)|+ |E|(7M +6−2/M)+4M2 +4M . We claim
that there exists an independent set in G of size s if and only if there exists
a solution to the general bundle pricing problem with revenue at least C + s/M .

Given an independent set V ′ ⊆ V of size |V ′| = s. Define E0 = {e = {u, v} ∈
E : u, v /∈ V ′}. Let pi = (pi1 , pi2) be defined by pi = (M + 1, M + 1) if
i ∈ V ∩ V ′ or i ∈ E ∩ E0 and pi = (M + 1 − 1

2M , M + 1 − 1
2M ) if i ∈ V \ V ′

or i ∈ E \ E0. Also, let px = M and py = M2, where py denotes the sum
of all M item prices in bundle {y}. Under this pricing strategy, we see that
πi = 4M3 + 8M2 + 2M − 2 for all i ∈ I = V ∪ E, irrespective of which pricing
is used for item i. Then, every edge e = {u, v} ∈ E contains one item priced
at (M + 1, M + 1) and two at (M + 1 − 1

2M , M + 1 − 1
2M ) by definition of the

pricing and set E0. As px = M , we have πe = 2(M +1)+4(M +1− 1
2M )+M =

7M + 6 − 2/M . The customer requesting all vertex-items and item x spends
(2M +2−1/M)|V \V ′|+(2M +2)|V ′|+px = (2M +2−1/M)|V |+M +(1/M)s.
Then, the total revenue is π = (|V | + |E|)πi + |E|πe + πxy + πV = C + (1/M)s.

For the converse, we are given a solution to instance I with revenue at least
C + (1/M)s. First, we consider πxy. If the customer requesting bundle {x, y}
is not a winner, the maximum revenue is M + 1 + 2M2. Otherwise, let px be
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the price for item x. Then, the maximum revenue is px + 2(M2 + M − px) +
(M2 + M), where px ∈ [M, M + 1] such that all customers are winners. Then,
πxy ≤ 4M2 + 3M (attained when px = M). For every item i ∈ I, we have
πi = max{2(2M2 +2M −1)(M +1), (2M2 +2M −1+1)(2M +2−1/M)}. Both
values are equal and therefore, πi = 4M3 + 8M2 + 2M − 2. Clearly, for every
e ∈ E, the revenue πe is at most the valuation 7M + 6 − 2/M . Now, we know
that the revenue from the customer requesting bundle {v1, v2 : v ∈ V } ∪ {x} is

πV = π − (|V | + |E|)πi − |E|πe − πxy ≥ (2M + 2 − 1/M)|V | + M + (1/M)s.

Thus, the minimum revenue is at least equal to the valuation. As this customer
cannot contribute more than the valuation, it should be equality throughout.
This also means that all other revenues described above attain their maximum,
thus px = M and py = M2. Now, let V ′ = {v ∈ V : pv = (M + 1, M + 1)} and
E0 = {e ∈ E : pe = (M +1, M +1)}. As πe = 7M +6−2/M and px = M for all
e = {u, v} ∈ E, we know that either u ∈ V ′ and v /∈ V ′, e /∈ E0, or v ∈ V ′ and
u /∈ V ′, e /∈ E0, or e ∈ E0 and u, v /∈ V ′. Thus, for each edge, either one vertex
is in V ′ or both are not in. Hence, V ′ is an independent set. Furthermore, the
customer requesting bundle {v1, v2 : v ∈ V } ∪ {x} pays

(2M+2−1/M)|V \V ′|+(2M+2)|V ′|+px = (2M+2−1/M)|V |+M+(1/M)|V ′|.
As this payment is equal to the revenue, which in turn has to be equal to the
valuation, we know that |V ′| = s. �	

5 Conclusions

Clearly, the existence of a quasi-PTAS for the highway pricing problem suggests
that a PTAS might be in reach [4,5]. Yet, we leave it as an open problem to
derive a PTAS, even for bounded inhomogeneity of valuations.
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