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Abstract

We study the design of optimal mechanisms in a setting where job-agents compete for being processed
by a service provider that can handle one job at a time. Each job has a processing time and incurs a waiting
cost. Jobs need to be compensated for waiting. We consider two models, one where only the waiting
costs of jobs are private information (1-d), and another where both waiting costs and processing times
are private (2-d). Discrete probability distributions represent the public common belief about private
information. In this setting, an optimal mechanism minimizes the total expected expenses to compensate
all jobs, while it has to be Bayes-Nash incentive compatible. We derive closed formulae for the optimal
mechanism in the 1-d case and show that it is efficient for symmetric jobs. For non-symmetric jobs,
we show that efficient mechanisms perform arbitrarily bad. For the 2-d case, we prove that the optimal
mechanism in general does not even satisfy IIA, the ‘independent of irrelevant alternatives’ condition.
Hence any attempt along the lines of the classical auction setting is doomed to fail. In the 2-d case, we
also show that the optimal mechanism is not even efficient forsymmetric agents.

1 Introduction

The design of optimal auctions is recognized as an intriguing issue in auction theory; first studied by Myerson
(1981) for the case of single item auctions. In that setting,the goal is to maximize the seller’s revenue. We
study the design of optimal auctions (or more precisely, mechanisms) in a setting where job-agents compete
for being processed by a service provider that can only handle one job at a time. No job can be interrupted
once started, and each job is characterized by service time and weight, the latter representing his disutility for
waiting per unit time. It is well known that the total disutility of the jobs is minimized by a scheduling policy
known as Smith’s rule: schedule jobs in order of non-increasing ratios of weight over service time [13].

Our results. We consider two cases. In theone-dimensional(1-d) case, jobs’ processing times are public
information and a job’s weight is only known to the job itself. Publicly known probability distributions over a
finite set of possible weights represent common beliefs about the weights. In thetwo-dimensional(2-d) case,
both weights and processing times are private information of the jobs. In both cases we aim at finding Bayes-
Nash incentive compatible mechanisms that minimize the expected expenses of the service provider. Given
jobs’ reports about their private information, a mechanismdetermines both an order in which jobs are served,
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and for each job a payment that the job receives. The payment can be seen as a compensation for waiting.
By a graph theoretic interpretation of the incentive compatibility constraints - as used e.g. by Rochet [12]
and Malakhov and Vohra [6] - we are able to derive optimal mechanisms. For the one-dimensional case, we
obtain closed formulae for modified job weights, and show that serving the jobs in the order of non-increasing
ratios of these modified weights over service times is optimal for the service provider, as long as a certain
regularity condition is fulfilled. It turns out that the optimal mechanism is not necessarily efficient, i.e., in
general it does not maximize total utility. But it does so if e.g. all jobs are symmetric. For non-symmetric
jobs, we show by example that the objective can be arbitrarily far from optimal if we insist on efficiency. We
also compare our optimal mechanism to the generalized VCG mechanism and see that expected payments
differ even for the case of symmetric jobs. For the two-dimensional case, our main result is that the optimal
mechanism generally does not satisfy a property called IIA,‘independent of irrelevant alternatives’. That
implies that the optimal mechanism cannot be expressed in terms of modified weights along the lines of the
1-d case. In fact, any kind of priority based list schedulingalgorithm where the priorities of a job depend
only on the characteristics of that job itself cannot in general be an optimal mechanism. We conclude that
optimal mechanism design for the two-dimensional case is substantially more involved than two-dimensional
mechanism design for auction settings, as studied in [6]. Wealso show that even for symmetric jobs, in the
2-d case the optimal mechanism is not efficient.

Related Work. Myerson [11] studies optimal mechanisms for single item auctions and continuous
1-dimensional type spaces. Here, optimal auctions are modified Vickrey auctions, i.e. modified efficient
auctions. When regarding the seller as additional agent whobids zero in the original auction, his modified
bid might become non-zero in the optimal auctions yielding areservation price. For a comparison between
Myerson’s and our results, see Section 3. In [4], the authorsgive an introduction to optimal mechanism
design with 1-dimensional continuous types under dominantstrategy incentive compatibility. Both Myer-
son’s and our optimal allocation rules turn out to be dominant strategy implementable as well, while they
yield optimal mechanisms in the larger class of Bayes-Nash incentive compatible mechanisms. Malakhov
and Vohra [6] regard optimal mechanisms for an auction setting with discrete 2-dimensional type spaces.
The derived optimal mechanisms again employ the efficient allocation rule with modified bids. We show
that their approach must fail in our setting. For details, werefer to Section 4. Armstrong [1] studies a
multi-object auction model where valuations are additive and drawn from a binary distribution (i.e. high or
low). He gives optimal auctions under specific conditions that reduce the type graph. From this paper it
becomes evident that optimal mechanism design with multi-dimensional discrete types is difficult. For our
model, we formalize this difficulty by showing that traditional approaches inevitably yield IIA-mechanisms
and therefore must fail. Other scheduling models have been looked at from a different angle in the economic
literature. See, e.g., [7] for efficient and budget-balanced mechanism design in a 1-dimensional model and
[8] for mechanisms that prevent merging and splitting of jobs.

Organization. In Sect. 2, we study the 1-d case and derive closed formulae for the optimal mechanism.
We compare the optimal to efficient mechanisms in Sect. 3. In Sect. 4, we study the 2-d case and show that
known approaches are doomed to fail here. We conclude with Sect. 5.

2 Optimal Mechanisms for the 1-Dimensional Setting

Setting & Preliminaries. Consider a single machine which can handle one job at a time. LetJ = {1, . . . , n}
denote the set of jobs. We regard jobs as selfish agents that act strategically. Each jobj has a processing
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time pj and a weightwj. While pj is publicly known, the actualwj is private information to jobj. We
refer to the private information of a job as its type. Jobs share common beliefs about other jobs’ types in
terms of probability distributions. We assume discrete distribution of weights, that is, agentj’s weightwj

follows a probability distribution over the discrete setWj = {w1
j , . . . , w

mj

j } ⊂ R, wherew1
j ≤ · · · ≤ w

mj

j .
Let ϕj be the probability distribution ofwj , that is, ϕj(w

i
j) denotes the probability associated withwi

j

for i = 1, . . . ,mj . Let Φj(w
i
j) =

∑i
k=1 ϕj(w

k
j ) be the cumulative probability up towi

j. Both ϕj and
Φj are public information. We assume that jobs’ weights are independently distributed. Let us denote by
W = Πj∈JWj the set of all type profiles. For any jobj, let W−j = Πk 6=jWk. Let ϕ be the joint probability

distribution ofw = (w1, . . . , wn). Thenϕ(w) = Πn
j=1ϕj(w

ij
j ) for w = (wi1

1 , . . . , win
n ) ∈ W . Let w−j and

ϕ−j be defined analogously. Forwi
j ∈ Wj andw−j ∈ W−j , we denote by(wi

j, w−j) the type profile where
job j has typewi

j and the types of all other jobs arew−j.
A direct revelation mechanisms consists of an allocation rule f and a payment schemeπ. Jobs have

to report their weights and they might report untruthfully if it suits them. Depending on those reports, the
allocation rule selects aschedule, i.e. an order in which jobs are processed on the machine. Thepayment
scheme assigns a payment that is made to jobs in order to reimburse them for their waiting cost. The
payments can be seen as a reimbursement for waiting.

Let S = {σ |σ is a permutation of(1, . . . , n)} denote the set of all feasible schedules. Then the al-
location rule is a mappingf : W → S. For any scheduleσ ∈ S, let σj be the position of jobj in the
ordering of jobs inσ. Then, bySj(σ) =

∑

σk<σj
pk, we denote the start time or waiting time of jobj in

σ. If job j has waiting timeSj and actual weightwi
j , it encounters a valuation of−wi

jSj . If j additionally
receives paymentπj, his total utility isπj − wi

jSj, i.e., we assume quasi-linear utilities. Let us denote by
ESj(f,wi

j) :=
∑

w−j∈W−j
Sj(f(wi

j , w−j))ϕ−j(w−j) the expected waiting time of jobj if it reports weight

wi
j and allocation rulef is applied. Denote byEπj(w

i
j) :=

∑

w−j∈W−j
πj(w

i
j , w−j)ϕ−j(w−j) the expected

payment toj. We assume that jobs aim at maximizing their expected utility.

Definition 1 A mechanism(f, π) is Bayes-Nash incentive compatibleif for every agentj and every two
typeswi

j ,w
k
j ∈ Wj

Eπj(w
i
j) − wi

jESj(f,wi
j) ≥ Eπj(w

k
j ) − wi

jESj(f,wk
j ) (1)

under the assumption that all agents apart fromj report truthfully. If for allocation rulef there exists
a payment schemeπ such that(f, π) is Bayes-Nash incentive compatible, thenf is called Bayes-Nash
implementable. The payment schemeπ is referred to as anincentive compatiblepayment scheme.

In order to account for individual rationality, we need to guarantee non-negative utilities for all agents
that report their true weight. To that end, we add a dummy weight w

mj+1
j to the type spaceWj for every

agentj. We assumeESj(f,w
mj+1
j ) = 0 andEπj(w

mj+1
j ) = 0 for all j ∈ J . Furthermore, we impose

the incentive constraintsEπj(w
i
j) − wi

jESj(f,wi
j) ≥ Eπj(w

mj+1
j ) − wi

jESj(f,w
mj+1
j ) implying that

Eπj(w
i
j) − wi

jESj(f,wi
j) ≥ 0 for any Bayes-Nash incentive compatible mechanism(f, π). Therefore, the

dummy weights together with the mentioned assumptions guarantee that individual rationality is satisfied
along with the incentive constraints. The dummy weight can be interpreted as an option for any job not to
take part in the mechanism.

We next define the notion of monotonicity w.r.t. weights, which is easily shown to be a necessary condi-
tion for Bayes-Nash implementability. In our setting, it iseven a sufficient condition.
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Definition 2 An allocation rulef satisfiesmonotonicity w.r.t. weightsor short monotonicity if for every
agentj ∈ J , wi

j < wk
j implies thatESj(f,wi

j) ≥ ESj(f,wk
j ).

Theorem 1 An allocation rulef is Bayes-Nash incentive compatible if and only if it satisfies monotonicity
w.r.t. weights.

The proof is quite standard and therefore omitted. We refer,e.g., to [9] for details.

The Type Graph. A useful tool for deriving optimal mechanisms is the type graph. It has been used
earlier, e.g. in [5, 6, 10]4. Thetype graph5 Tf is defined for a fixed agentj. Tf has node setWj and contains
an arc from any nodewi

j to any other nodewk
j of length

ℓik = wi
j [ESj(f,wk

j ) − ESj(f,wi
j)].

Here,ℓik represents the gain in expected valuation for agentj by truthfully reporting typewi
j instead of lying

typewk
j . The incentive constraints for a Bayes-Nash incentive compatible mechanism(f, π) and jobj can

be read as
Eπj(w

k
j ) ≤ Eπj(w

i
j) + wi

j[ESj(f,wk
j ) − ESj(f,wi

j)] = Eπj(w
i
j) + ℓik.

That is, the expected paymentsEπj(·) constitute anode potentialin Tf . A standard result in graph theory
says that these node potentials exist if and only if there is no negative cycle in the graph. That is, Bayes-Nash
implementability of an allocation rulef is equivalent to the fact that the type graphTf for any agentj has no
negative cycle. We then say that theTf ’s satisfy thenon-negative cycle property. Monotonicity is equivalent
to the fact that there is no negative cycle of length two inTf . We call this property thenon-negative two-cycle
property. It follows from

ℓik + ℓki = wi
j[ESj(f,wk

j ) − ESj(f,wi
j)] + wk

j [ESj(f,wi
j) − ESj(f,wk

j )]

= (wi
j − wk

j )[ESj(f,wk
j ) − ESj(f,wi

j)].

The last term is non-negative for all jobsj and any two typeswi
j andwk

j iff monotonicity holds.

Optimal Mechanisms. Let us start by investigating theefficientallocation rule for the given setting,
i.e., the allocation rule that maximizes the total valuation of agents. It is well known that scheduling
in order of non-increasing weight over processing time ratios minimizes the sum of weighted start times
∑n

j=1 wjSj(f(w)) for any type profilew ∈ W , and therefore maximizes the total valuation of all agents.
This allocation rule is known as Smith’s rule [13]. The optimal mechanism that we derive deploys a slightly
different allocation rule, namely Smith’s rule with respect to certain modified weights.

Our goal is to set up a mechanism that is Bayes-Nash incentivecompatible and among all such mecha-
nisms minimizes the expected total payment that has be made to the jobs. Given any Bayes-Nash incentive
compatible mechanism(f, π), one can obviously substitute the payment scheme by its expected payment
scheme yielding(f,Eπ(·)) without loosing Bayes-Nash incentive compatibility. Moreover, the expected
total payment to the agents remains unchanged under the substitution. Therefore, we restrict focus to mech-
anisms in which agents always receive a payment that is equalto the expected payment given the agent’s
report and which is independent of the specific report of the other agents and of the actual allocation.

4The exact definitions of the type graph might differ in the papers depending on the underlying model.
5We suppress the dependence on agentj in the notation and simply writeTf .
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Note that, unlike e.g. in [11], in the discrete setting considered here revenue equivalence does not hold.
Therefore, there are possibly multiple payment schemes that make an allocation rule incentive compati-
ble. Letf be an allocation rule and letπf (·) be a payment scheme that minimizes expected expenses for
the machine among all payment schemes that makef Bayes-Nash incentive compatible. More specifi-
cally, πf

j (wi
j) denotes the payment to agentj declaring weightwi

j under this optimal payment scheme. Let

Pmin(f) =
∑

j∈J

∑

wi
j∈Wj

ϕj(w
i
j)π

f
j (wi

j) be the minimum expected total expenses for allocation rulef .

The following lemma specifies the optimal payment scheme fora given allocation rule.

Lemma 1 For a Bayes-Nash implementable allocation rulef , the payment scheme defined by

πf
j (w

mj+1
j ) = 0, πf

j (wi
j) =

mj
∑

k=i

wk
j [ESj(f,wk

j ) − ESj(f,wk+1
j )] for i = 1, . . . ,mj

is incentive compatible, individually rational and minimizes the expected total payment made to agents. The
corresponding expected total payment is given by

Pmin(f) =
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)w

i
jESj(f,wi

j),

where the modified weightswj are defined as follows

w1
j = w1

j , wi
j = wi

j + (wi
j − wi−1

j )
Φj(w

i−1
j )

ϕj(w
i
j)

for i = 2, . . . ,mj .

Proof. Let p = (wi
j = a0, a1, . . . , am = w

mj+1
j ) denote a path fromwi

j to w
mj+1
j in the type graphTf for

agentj. Denote bylength(p) the sum of its arc lengths. Let(f, π) be a Bayes-Nash incentive compatible
mechanism. Adding up the incentive constraints

Eπj(ai) ≤ Eπj(ai−1) + ai−1[ESj(f, ai) − ESj(f, ai−1)] = Eπj(ai−1) + ℓai−1ai

for i = 1, . . . ,m yields
Eπj(w

mj+1
j ) ≤ Eπj(w

i
j) + length(p).

SinceEπj(w
mj+1
j ) = 0, this is equivalent to−length(p) ≤ Eπj(w

i
j). As f is Bayes-Nash implementable,

Tf satisfies the non-negative cycle property. Consequently, we can compute shortest paths inTf . With

dist(wi
j , w

mj+1
j ) being the length of a shortest path fromwi

j tow
mj+1
j , the above yields−dist(wi

j , w
mj+1
j ) ≤

Eπj(w
i
j). Therefore,−dist(wi

j, w
mj+1
j ) is a lower bound on the expected payment for reportingwi

j . On the
other hand, since we have

dist(wi
j , w

mj+1
j ) ≤ ℓik + dist(wk

j , w
mj+1
j )

for any two typeswi
j andwk

j , it follows that

−dist(wk
j , w

mj+1
j ) ≤ −dist(wi

j, w
mj+1
j ) + ℓik.

Consequently,−dist(·, w
mj+1
j ) is a node potential inTf . Settingπf

j (wi
j) = −dist(wi

j , w
mj+1
j ) therefore

defines an incentive compatible payment scheme that minimizes the expected payment to every agent for any
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reported type of the agent. Consequently, this payment scheme also minimizes the expected total payment
to agents. Recall that individual rationality is satisfied along with the incentive constraints.

It is easy to show that wheneveri < k < l then ℓik + ℓkl ≤ ℓil and ℓlk + ℓki ≤ ℓli. Therefore, a
shortest path fromwi

j to w
mj+1
j is the path that includes all intermediate nodeswi+1

j , . . . , w
mj

j . Observing

that−dist(w
mj+1
j , w

mj+1
j ) = 0 and−dist(wi

j , w
mj+1
j ) =

∑mj

k=i w
k
j [ESj(f,wk

j ) − ESj(f,wk+1
j )] for all

wi
j ∈ Wj \ {w

mj+1
j } proves the first claim.

Next, the computation of the minimum expected total paymentfor allocation rulef is tedious but
straightforward, given the definition of modified weights asw1

j = w1
j , and fori = 2, . . . ,mj

wi
j = wi

j + (wi
j − wi−1

j )
Φj(w

i−1
j )

ϕj(wi
j)

.

With this definition and the definition ofπf
j (wi

j) we eventually obtain (see the appendix for more details)

Pmin(f) =
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)π

f
j (wi

j)

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)w

i
jESj(f,wi

j).

�

Given the minimum payments per allocation rule, we want to specify the allocation rulef which mini-
mizesPmin(f) among all Bayes-Nash implementable allocation rules.

Definition 3 If f ∈ arg min{Pmin(f) | f : W → S, f Bayes-Nash implementable}, then we call the mech-
anism(f, πf ) an optimal mechanism.

We will need the following regularity condition that ensures Bayes-Nash implementability of the alloca-
tion rule in our optimal mechanism.

Definition 4 We say thatregularityis satisfied if for every agentj andi = 2, . . . ,mj − 1

wi
j + (wi

j − wi−1
j )

Φj(w
i−1
j )

ϕj(wi
j)

≤ wi+1
j + (wi+1

j − wi
j)

Φj(w
i
j)

ϕj(w
i+1
j )

.

This implies thatwi
j < wk

j wheneverwi
j < wk

j .

Note that regularity is satisfied e.g. if the differenceswi
j − wi−1

j are constant and the distribution has a
non-increasing reverse hazard rate.

Theorem 2 Let the modified weights be defined as in Lemma1. Letf be the allocation rule that schedules
jobs in order of non-increasing ratioswj/pj. If regularity holds, then(f, πf ) is an optimal mechanism.

6



Proof. We show thatf is Bayes-Nash implementable and minimizesPmin(f) among all Bayes-Nash imple-
mentable allocation rules. For any allocation rulef , we can rewritePmin(f) as follows, using independence
of weight distributions. LetW ′

j = Wj \ {w
mj+1
j } andW ′ = Πj∈JW ′

j.

Pmin(f) =
∑

j∈J

∑

wi
j∈W ′

j

ϕj(w
i
j)w

i
jESj(f,wi

j)

=
∑

j∈J

∑

wi
j∈W ′

j

ϕj(w
i
j)w

i
j

∑

w−j∈W−j

Sj(f(wi
j, w−j))ϕ−j(w−j)

=
∑

j∈J

∑

(wi
j ,w−j)∈W ′

ϕ(wi
j , w−j)w

i
jSj(f(wi

j, w−j))

=
∑

w∈W ′

ϕ(w)
∑

j∈J

w̄jSj(f(w)).

Thus,Pmin(f) can be minimized by minimizing
∑

j∈J w̄jSj(f(w)) for every reported type profilew. This
is achieved by using Smith’s rule with respect to modified weights, i.e., scheduling in order of non-increasing
ratioswj/pj. Under Smith’s rule, the expected start timeESj(wj) is clearly non-increasing in the modified
weightwj. The regularity condition ensures that it is non-increasing in the original weightswj . Therefore,
Smith’s rule with respect to modified weights satisfies monotonicity and is hence Bayes-Nash implementable
by Theorem 1. This completes the proof. �

3 Optimality versus Efficiency

For symmetric agents the optimal and the efficient allocation coincide.

Corollary 1 If agents are symmetric, i.e.W1 = · · · = Wn, ϕ1 = · · · = ϕn and p1 = · · · = pn and if
distributions are such that regularity holds, then the optimal mechanism is efficient.

Proof. If W1 = · · · = Wn = {w1, . . . , wm} andϕ1 = · · · = ϕn, then for any two agentsj1 andj2, and
i = 1, . . . ,m, the modified weights are equal, i.e.wi

j1
= wi

j2
. Since processing times are also equal and

since regularity guarantees that modified weights are increasing in the original weights, scheduling jobs in
order of their non-increasing ratioswj/pj is equivalent to scheduling them in order of their non-increasing
ratioswj/pj . That is, the efficient allocation rule and the allocation rule from the optimal mechanism in
Theorem2 coincide. �

If weight distributions differ among agents or if agents have different processing times, then the optimal
mechanism is in general not efficient. In fact, when restricting to efficient mechanisms, the total expected
payment can be arbitrarily bad in comparison to the optimal one. This is illustrated by the following two
examples; proofs can be found in the appendix.

Example 1 Let there be two jobs 1 and 2 withW1 = {M + 1} andW2 = {1,M} for some constantM .
Letϕ2(1) = 1 − 1/M , ϕ2(M) = 1/M andp1 = p2 = 1. LetEff be the efficient andOpt be the optimal
allocation rule. Then the ratioPmin(Eff)/Pmin(Opt) goes to infinity asM goes to infinity.
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Remark 1 In the above, the ratio of the expected payments of the efficient versus the optimal allocation rule
is analyzed. It is also easy to see that the expected ratio of the payments tends to infinity asM approaches
infinity.

Example 2 Let there be two jobs 1 and 2 with the same weight distributionW1 = W2 = {1,M}, ϕj(1) =
1 − 1/M , ϕj(M) = 1/M for j = 1, 2. Letp1 = 1/2 andp2 = M/2 + 1. LetEff be the efficient andOpt
be the optimal allocation rule. Then the ratioPmin(Eff)/Pmin(Opt) goes to infinity asM goes to infinity.

Remark 2 As in the first example, it is easy to see that the expected ratio of the payments tends to infinity as
M approaches infinity.

Comparison to Myerson’s result. For the single item auction and continuous type spaces, Myerson
[11] has made similar observations: in his setting, the efficient auction is the Vickrey auction. The optimal
auction can be seen as a modified Vickrey Auction with the seller submitting a bit himself. In our setting
also, the allocation in the optimal mechanism is equivalentto the efficient allocation rule with respect to
modified data. Nevertheless, in [11] the optimal and the efficient mechanism may differ. For the single item
auction this can be due to the seller keeping the item (even inthe symmetric case) or because a bidder that
has not submitted the highest bid can get the item in the asymmetric case. In our setting, the optimal and the
efficient mechanism can only differ if agents are asymmetric, see Corollary1 and Examples1 and 2.

On the generalized VCG Mechanism.The VCG mechanism is due to Vickrey [14], Clarke [2] and
Groves [3]. The allocation rule is the efficient one. In our setting this means scheduling in order of non-
increasing ratioswj/pj . The payment scheme pays to agentj an amount that is equal to an appropriate
constant minus the total loss in valuation of the other agents due toj’s presence. For agentj with processing
timepj , the total loss in valuation of the other agents is equal to the product ofpj and the total weight of all
agents processed afterj. In order to ensure individual rationality, we have to addpj times the total weight of
all agents exceptj. Therefore, the resulting payment toj for reported type profilew and efficient schedule
σ is equal to

πV CG
j (w) = pj

∑

k∈J
σk<σj

wk.

As illustrated by examples 1 and 2, the allocation of the VCG mechanism can differ from the allocation
of the optimal mechanism if agents are not symmetric. Moreover, if jobs are symmetric, the VCG mechanism
still can be non-optimal in terms of payments. This is illustrated by the following example; for a proof we
refer to the appendix.

Example 3 There are two symmetric agents withW1 = W2 = {w1, w2}, w1 < w2, and ϕj(w
1) =

ϕj(w
2) = 1/2 for j = 1, 2. Processing times are equal and without loss of generalityp1 = p2 = 1.

Then the expected expenses of the VCG mechanism are strictlyhigher than those of the optimal mechanism.

4 The 2-Dimensional Setting

Setting and Notation. In contrast to the 1-dimensional setting, both weight and processing time of a job are
now private information of the job. Hencej’s type is the tuple(wj , pj). We assume public probability distri-
bution information, i.e.(wj , pj) ∈ Wj × Pj, whereWj = {w1

j , . . . , w
mj

j } with w1
j ≤ · · · ≤ w

mj

j andPj =
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{p1
j , . . . , p

qj

j } with p1
j ≤ · · · ≤ p

qj

j . Let ϕj be the probability distribution ofj’s type, that is,ϕj(w
i
j , p

k
j ) de-

notes the probability associated with the type(wi
j , p

k
j ) for i = 1, . . . ,mj andk = 1, . . . , qj. Bothϕj andΦj

are public. Distributions are independent between agents.Denote byT = Πj∈J(Wj ×Pj) the set of all type
profiles. For any jobj, let T−j = Πr 6=j(Wr ×Pr) be the set of type profiles of all jobs exceptj. Letϕ be the
joint probability distribution of(w1, p1, . . . , wn, pn). Then for type profilet = (wi1

1 , pk1

1 , . . . , win
n , pkn

n ) ∈ T ,

ϕ(t) = Πn
j=1ϕj(w

ij
j , p

kj

j ). Let t−j andϕ−j be defined analogously. For(wi
j , p

k
j ) ∈ Wj ×Pj andt−j ∈ T−j ,

we denote by((wi
j , p

k
j ), t−j) the type profile where jobj has type(wi

j , p
k
j ) and the types of the other jobs

are represented byt−j. Denote byESj(f,wi
j , p

k
j ) :=

∑

t−j∈T−j
Sj(f((wi

j , p
k
j ), t−j))ϕ−j(t−j) the expected

waiting time of jobj if he reports type(wi
j , p

k
j ) and allocation rulef is applied. Denote byEπj(w

i
j , p

k
j ) :=

∑

t−j∈T−j
πj((w

i
j , p

k
j ), t−j)ϕ−j(t−j) the expected payment toj.

We assume that an agent can only report a processing time thatis not lower than his true processing time
and that a job is processed for his reported processing time.This is a natural assumption, since a job can add
unnecessary work to achieve a longer processing time, but reporting a shorter processing time can easily be
punished by preempting the job after the declared processing time (before it is actually finished).

Note that by regarding the processing time as private information, we introduce informational exter-
nalities: jobj has a different valuation for a schedule if the processing time (and hence the type) of a job
scheduled beforej changes. In this regard, our model differs from the auction models studied in [11] and [6].

4.1 Bayes-Nash Implementability and the Type Graph

Definition 5 A mechanism(f, π) is calledBayes-Nash incentive compatibleif for every agentj and every
two types(wi1

j , pk1

j ) and(wi2
j , pk2

j ) with i1, i2 ∈ {1, . . . ,mj}, k1, k2 ∈ {1, . . . , qj}, k1 ≤ k2,

Eπj(w
i1
j , pk1

j ) − wi1
j ESj(f,wi1

j , pk1

j ) ≥ Eπj(w
i2
j , pk2

j ) − wi1

j ESj(f,wi2
j , pk2

j ) (2)

under the assumption that all agents apart fromj report truthfully.

Note that by defining the incentive constraints only fork1 ≤ k2, we account for the fact that agents can only
overstate their processing time, but cannot understate it.

In order to ensure individual rationality, again add a dummytype tdj to the type space for every agent
j, and letESj(f, tdj ) = 0 and Eπj(t

d
j ) = 0 for all j ∈ J . As in the 1-dimensional case, the dummy

types together with the mentioned extra incentive constraints guarantee that individual rationality is satisfied
along with the incentive constraints. Sometimes, it will beconvenient to write(w

mj+1
j , pk

j ) for somek ∈

{1, . . . , qj} instead oftdj .
In the 2-dimensional setting, the type graphTf of agentj has node setWj × Pj and contains an arc

from any node(wi1
j , pk1

j ) to every other node(wi2
j , pk2

j ) with i ∈ {1, . . . ,mj}, i2 ∈ {1, . . . ,mj + 1},
k ∈ {1, . . . , qj}, k1 ≤ k2 of length

ℓ(i1k1)(i2k2) = wi1
j [ESj(f,wi2

j , pk2

j ) − ESj(f,wi1
j , pk1

j )].

Note that we have arcs only in direction of increasing processing times, since agents can only overstate their
processing time. Furthermore, every node has an arc to the dummy type, but there are no outgoing arcs from
the dummy type.

Definition 6 An allocation rulef satisfiesmonotonicity w.r.t. weightsif for every agentj ∈ J and fixed
pk

j ∈ Pj , wi1
j < wi2

j implies thatESj(f,wi1
j , pk

j ) ≥ ESj(f,wi2
j , pk

j ).
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Theorem 3 An allocation rulef is Bayes-Nash incentive compatible in the 2-dimensional setting if and only
if it satisfies monotonicity with respect to weights.

Proof. The claim reduces to showing that in the type graph of any agent j the non-negative cycle property
is equivalent to the non-negative two-cycle property. Since there is an arc from a node representing type
(wi1

j , pk1

j ) to the node representing type(wi2
j , pk2

j ) if and only if pk1

j ≤ pk2

j , cycles can only occur between
nodes representing types with equal processing times. Hence, the proof is analogous to the 1-dimensional
case. �

Similar as in [6], one can show that some arcs in the type graphare not necessary, since the corresponding
incentive constraints are implied by others. The reduced type graph of agentj contains only arcs that are
necessary in that sense. These arcs are:

• an arc from type(wi
j , p

k
j ) to (wi+1

j , pk
j ) for all i ∈ {1, . . . ,mj} andk ∈ {1, . . . , qj}

• an arc from type(wi+1
j , pk

j ) to (wi
j, p

k
j ) for all i ∈ {1, . . . ,mj − 1} andk ∈ {1, . . . , qj}

• an arc from type(wi
j , p

k
j ) to (wi

j , p
k+1
j ) for all i ∈ {1, . . . ,mj} andk ∈ {1, . . . , qj − 1}.

A sketch of the reduced type graph is given in Figure 1. Expected payments correspond to node potentials
in the reduced type graph. Whenever we refer to the type graphTf in the following, the reduced type graph
is meant. The reduced type graph comes handy particularly when considering our (counter) examples in the
next subsection.

w1

j , p
1

j
w

mj

j , p1

j

w
mj

j , p
qj

j
w1

j , p
qj

j

tdj

Figure 1: reduced type graph

4.2 On Optimal Mechanisms

We start be reviewing an approach to two-dimensional optimal mechanism design studied in [6]. Here,
the authors regard a limited-supply multi-item auction, were each agent’s type(i, j) is given by a marginal
valuationi per item and a capacityj. Above that capacity, the agent has zero valuation for each additional
item. The goal is revenue maximization. Bayes-Nash implementability is equivalent to the expected amount
of items allocated to an agent being monotone in his reportedvalue for i. Malakhov and Vohra [6] use
the type graph approach as follows. Assuming monotonicity in j as well, all allocation rules have the
same shortest path tree, namely the “up-first-then-right” tree. From this tree, closed formulae for modified
marginal valuations and an expression for the revenue of a specific allocation rule are derived. The resulting
modified efficient allocation rule (with respect to the derived modified marginal valuations) both maximizes
the revenue expression and satisfies the additional monotonicity assumption. Especially, the shortest path
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tree of the derived modified efficient allocation rule is the up-first-then-right tree. The argument to relax the
monotonicity assumption inj goes as follows. For any allocation rule – not necessarily monotone inj –
the up-first-then-right tree yields an individual upper bound on the revenue for that specific allocation rule.
By maximizing the individual upper bounds over all allocation rules, a global upper bound for the revenue
is achieved. But this upper bound is assumed by the modified efficient mechanism derived before, which is
hence optimal.

It turns out that the described approach is doomed to fail in our setting. Especially, one cannot find any
treeTr ⊆ Tf such that the allocation rule optimizing the expected totalpayment computed on the basis
of Tr in turn hasTr as a shortest path tree. Note that the approach of [6] and alsoour approach for the 1-
dimensional setting focus on one agent and its type graph. Hence any optimal allocation rule derived this way
is necessarily a modified Smith’s rule with modified weights that can be computed from the characteristics
(type report and distribution) of the agent itself. Such an allocation rule satisfies the following IIA property.

Definition 7 We say that an allocation rulef is independent of irrelevant alternatives(IIA) if the relative
order of any two jobsj1 and j2 is the same in the schedulesf(t1) and f(t2) for any two type profiles
t1, t2 ∈ T that differ only in the types of agents fromJ \ {j1, j2}.

In other words, the relative order of two jobs is independentof all other jobs. For the 2-d setting, this is not
necessarily the case for optimal mechanisms.

Theorem 4 The optimal allocation rule for the 2-dimensional setting does in general not satisfy IIA.

Proof. The proof uses the following instance with three jobs. Job 1 has type(1, 1), job 2 has type(2, 2) and
job 3 has type space{1.9, 2}×{1, 2}. The probabilities for job 3’s types areϕ3(1.9, 1) = 0.8, ϕ3(2, 2) = 0.2
andϕ3(1.9, 2) = ϕ3(2, 1) = 0 respectively. We show that the best allocation rule that satisfies IIA achieves
a minimum expected total payment of at least 5.6, whereas there exists an allocation rule – violating IIA –
with an expected total payment of 4.88. The details are movedto the appendix. �

Theorem 4 shows that any kind of priority based algorithm or list scheduling algorithm where the priority
of a job can be computed from the characteristics of the job itself cannot be optimal in general. Moreover,
the type graph approach must fail, since it focusses on a single agent. Hence, optimal mechanism design
for our 2-dimensional setting is considerably more complicated than for the 1-dimensional setting and for
traditional auction settings as described in [11] and [6]. One explanation for this is the fact that our 2-d
setting in fact entails informational externalities, as opposed to the auction settings in [11] and [6].

When there are only two agents present, then IIA is triviallysatisfied. Recall that in the 1-dimensional
case the optimal mechanism is efficient for symmetric agentsand regular distributions and that the uniform
distribution is regular. This is contrasted by the following theorem.

Theorem 5 Even for two symmetric agents,2 × 2-type spaces and uniform probability distributions, the
optimal mechanism is not efficient.

Proof. We show that the efficient allocation is for some instances dominated by thew-rule, which schedules
the job with the higher weight first. For details we refer to the appendix. �
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5 Conclusion

We have seen that the graph theoretic approach is an intuitive tool for optimal mechanism design, and yields
a closed formula for the optimal mechanism in the 1-d discrete case. The same approach works for the
continuous case, too. The results parallel Myerson’s results for single item auctions; although there are dif-
ferences. It is not hard to see that the optimal allocation rule – Smith’s rule with respect to modified weights
– is even dominant strategy implementable, with the same total expected payment for the mechanism. To
this end, only the payment scheme has to be defined appropriately for each reported type profile.

Moreover, we have seen that in the two-dimensional case the canonical approach does not work and
that optimal mechanism design seems to be considerably morecomplicated than in the traditional auction
models. We leave it as an open problem to identify (closed formulae for) optimal mechanisms for the 2-d
case. It is conceivable, however, that closed formulae don’t exist.
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6 Appendix: Proofs

Proof of Lemma 1We are only left to compute the minimum expected total payment for a given Bayes-Nash
implementable allocation rulef , and given the payment scheme defined by

πf
j (w

mj+1
j ) = 0, πf

j (wi
j) =

mj
∑

k=i

wk
j [ESj(f,wk

j ) − ESj(f,wk+1
j )] for i = 1, . . . ,mj .

Pmin(f) =
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)π

f
j (wi

j)

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)

mj
∑

k=i

wk
j [ESj(f,wk

j ) − ESj(f,wk+1
j )]

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)

( mj
∑

k=i

wk
j ESj(f,wk

j ) −

mj
∑

k=i+1

wk−1
j ESj(f,wk

j )

)

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)

(

wi
jESj(f,wi

j) +

mj
∑

k=i+1

ESj(f,wk
j )(wk

j − wk−1
j )

)

=
∑

j∈J

(

ESj(f,w1
j )w

1
j ϕj(w

1
j ) +

mj
∑

i=2

ESj(f,wi
j)

(

ϕj(w
i
j)w

i
j + (wi

j − wi−1
j )

i−1
∑

k=1

ϕj(w
k
j )

))

=
∑

j∈J

(

ESj(f,w1
j )w

1
j ϕj(w

1
j ) +

mj
∑

i=2

ESj(f,wi
j)
(

Φj(w
i
j)w

i
j − Φj(w

i−1
j )wi−1

j

)

)

Recall the definition of modified weightswj , namelyw1
j = w1

j , and fori = 2, . . . ,mj

wi
j =

wi
jΦj(w

i
j) − wi−1

j Φj(w
i−1
j )

ϕj(wi
j)

=
wi

jϕj(w
i
j) + wi

jΦj(w
i−1
j ) − wi−1

j Φj(w
i−1
j )

ϕj(wi
j)

= wi
j + (wi

j − wi−1
j )

Φj(w
i−1
j )

ϕj(wi
j)

.

This yields

Pmin(f) =
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)w

i
jESj(f,wi

j).

�

Example 1 Let there be two jobs 1 and 2 withW1 = {M +1} andW2 = {1,M} for some constantM .
Letϕ2(1) = 1 − 1/M , ϕ2(M) = 1/M andp1 = p2 = 1. LetEff be the efficient andOpt be the optimal
allocation rule. Then the ratioPmin(Eff)/Pmin(Opt) goes to infinity asM goes to infinity.

Proof. The efficient allocation rule, Smith’s rule, always allocates job 1 first. So the optimal payment for
Smith’s rule is to pay 0 to job 1 and to payM to job 2, irrespective of its type. The minimum expected total
payment is hencePmin(Eff) = M .
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For the optimal allocation, we compute modified weights according to Lemma 1:w1
1 = w1

1 = M + 1,
w1

2 = w1
2 = 1 andw2

2 = M + (M − 1)(1 − 1/M)/(1/M) = M2 − M + 1. The latter is larger than
M + 1 if M > 2. Therefore, job 2 is scheduled in front of job 1 if he has weight M and behind if he has
weight 1. The expected start times for job 2 areES2(Opt, 1) = 1 andES2(Opt,M) = 0, respectively.
Optimal payments according to Lemma 1 areπOpt

2 (1) = 1 andπOpt
2 (M) = 0. For job 1, the expected

start time isES1(Opt,M + 1) = 1/M and the expected paymentπOpt
1 (M + 1) = 1 + 1/M . Hence,

Pmin(Opt) = 1 + 1/M + 1 · (1 − 1/M) = 2.
Consequently,Pmin(Eff)/Pmin(Opt) = M/2, which tends to infinity ifM goes to infinity. �

Example 2Let there be two jobs 1 and 2 with the same weight distributionW1 = W2 = {1,M}, ϕj(1) =
1 − 1/M , ϕj(M) = 1/M for j = 1, 2. Letp1 = 1/2 andp2 = M/2 + 1. LetEff be the efficient andOpt
be the optimal allocation rule. Then the ratioPmin(Eff)/Pmin(Opt) goes to infinity asM goes to infinity.

Proof. The efficient allocation rule always schedules job 1 first, since1/(1/2) = 2 > 2M/(M + 2) =
M/(M/2 + 1). Therefore, the expected start time of job 1 is 0 and that of job 2 is 1/2. Optimal pay-
ments according to Lemma 1 areπEff

1 (1) = πEff
1 (M) = 0 andπEff

2 (1) = πEff
2 (1) = M/2. Hence,

Pmin(Eff) = M/2.
For the optimal mechanism, we compute modified weights asw1

1 = w1
2 = 1 andw2

1 = w2
2 = M2−M+1.

Job 1 is scheduled first, whenever both jobs have the same weight or job 1 has a larger weight than job 2. In
the case were job 1 has (modified) weight 1 and job 2 has modifiedweightM2 − M + 1, job 2 is scheduled
first for M > 2, since1/(1/2) < (M2 − M + 1)/(M/2 + 1). The resulting expected start times and
payments are given below:

ES1(Opt, 1) = 1/2 + 1/M

ES1(Opt,M) = 0

ES2(Opt, 1) = 1/2

ES2(Opt,M) = 1/(2M)

πOpt
1 (1) = 1/2 + 1/M

πOpt
1 (M) = 0

πOpt
2 (1) = 1 − 1/(2M)

πOpt
2 (M) = 1/2.

Hence,

Pmin(Opt) = (
1

2
+

1

M
)(1 −

1

M
) + (1 −

1

2M
)(1 −

1

M
) +

1

2
·

1

M

= (1 −
1

M
)(

3

2
+

1

2M
) +

1

2
·

1

M
.

Thus, the ratioPmin(Eff)/Pmin(Opt) tends to infinity ifM tends to infinity. �

Example 3 There are two symmetric agents withW1 = W2 = {w1, w2}, w1 < w2, and ϕj(w
1) =

ϕj(w
2) = 1/2 for j = 1, 2. Processing times are equal and without loss of generalityp1 = p2 = 1. Then

the expected expenses of the VCG mechanism are strictly higher than those of the optimal mechanism.

Proof. Regularity is trivially satisfied and therefore the allocation of the optimal mechanism from Section2
is efficient. There are four possible type profiles, each occurring with probability 1/4:(w1, w1), (w1, w2),
(w2, w1), (w2, w2). The resulting schedules are the same for the VCG and the optimal mechanism and
schedule the job with the higher weight first or randomize uniformly in the case of equal weights, respec-
tively. Let us first compute the expected total payment for the VCG mechanism. The VCG mechanism pays
to the job that is scheduled last the weight of the job that is scheduled before him. Thus, the VCG mecha-
nism has to spendw1 in the first case, andw2 in the second, third and fourth case, respectively. The total
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expected payment of the VCG mechanism is hence(3w2 + w1)/4. Let (f, πf ) denote the optimal mecha-
nism from Section2. In the optimal mechanism, the expected payment to a job with weightw1 is equal to
Eπf

j (w1) = w1[ESj(f,w1)−ESj(f,w2)]+ w2ESj(f,w2) = w1[3/4− 1/4]+ w2[1/4] = w1/2+ w2/4.

The expected payment to a job with weightw2 is Eπf
j (w2) = w2ESj(f,w2) = w2/4. The total expected

payment for the optimal mechanism is thus2 ·1/2 · (w1/2+w2/4+w2/4) = (w1 +w2)/2. Sincew2 > w1,
the expected expenses of the VCG mechanism are strictly higher than those of the optimal mechanism.
Therefore, the VCG mechanism is not optimal. �

Theorem 4The optimal allocation rule for the 2-dimensional setting does in general not satisfy IIA.

Proof. Consider the following instance with three jobs. Job 1 has type(1, 1), job 2 has type(2, 2) and job 3
has type space{1.9, 2}×{1, 2}. The probabilities for job 3’s types areϕ3(1.9, 1) = 0.8, ϕ3(2, 2) = 0.2 and
ϕ3(1.9, 2) = ϕ3(2, 1) = 0 respectively. We will show that the best allocation rule that satisfies IIA achieves
a minimum expected total payment of at least 5.6, whereas there exists an allocation rule – violating IIA –
with an expected total payment of 4.88. There are six possible schedules for three jobs, where we denote e.g.
by 312 the schedule where job 3 comes first and job 2 last. Thereare only two cases that occur with positive
probability: job 3 has type(1.9, 1), which we refer to as casea, and job 3 has type(2, 2), which we refer to as
caseb. An allocation rule that satisfies IIA must schedule job 1 and2 in the same relative order in casea and
b. Therefore, any such rule must either choose a schedule from{123, 132, 312} or from {213, 231, 321} in
both cases. As an example, we compute a lower bound on the optimal paymentPmin(f) for the case where
f chooses schedule 123 in casea and schedule 132 in caseb. Since there is only one possible type for job 1
and 2, only individual rationality matters for the optimal payments to those jobs and henceπf

1 (1, 1) = 0 and
πf

2 (2, 2) = 2(0.8 ·1+0.2 ·(1+2)) = 2.8. For job 3, we take individual rationality into account as well as the
incentive constraintπf

3 (1.9, 1)−1.9 ·ES3(1.9, 1) ≥ πf
3 (2, 2)−1.9 ·ES3(2, 2). While individual rationality

requiresπf
3 (1.9, 1) ≥ 1.9 · 3 = 5.7 andπf

3 (2, 2) ≥ 2, the latter is equivalent toπf
3 (1.9, 1) ≥ πf

3 (2, 2) + 3.8.
Therefore,πf

3 (2, 2) ≥ 2 andπf
3 (1.9, 1) ≥ 5.8. HencePmin(f) ≥ 2.8 + 0.8 · 5.8 + 0.2 · 2 = 7.84. Note that

this is only a lower bound, since for the exact value ofPmin(f), we must additionally consider the incentive
constraints that result from the two types(1.9, 2) and(2, 1), which have zero probability, but are in the type
space of job 3.

In total, there are 18 allocation rules that satisfy IIA. We list the corresponding lower bounds onPmin(f)
in the following table.

f(a) f(b) πf
1

πf
2

LB πf
3
(1.9, 1) LB πf

3
(2, 2) LB Pmin(f)

123 123 0 2 6 6 8
123 132 0 2.8 5.8 2 7.84
123 312 0.4 2.8 5.7 0 7.76
132 123 0 3.6 2.2 6 6.56
132 132 0 4.4 2 2 6.4
132 312 0.4 4.4 1.9 0 6.32
312 123 0.8 3.6 0.3 6 5.84
312 132 0.8 4.4 0.1 2 5.68
312 312 1.2 4.4 0 0 5.6
123 123 2 0 6 6 8
123 123 2.4 0 5.9 4 7.92
123 123 2.4 0.8 5.7 0 7.76
123 123 2.8 0 4.1 6 7.28
123 123 3.2 0 4 4 7.2
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123 123 3.2 0.8 3.8 0 7.04
123 123 2.8 1.6 0.3 6 5.84
123 123 3.2 1.6 0.2 4 5.76
123 123 3.2 2.4 0 0 5.6

Hence, 5.6 is a lower bound for the expected total payment made by any IIA mechanism. On the other
hand, regard the allocation rule that chooses schedule 132 in casea and schedule 231 in caseb. We extend
the allocation rule to the zero probability type such that itchooses schedule 132 for type(2, 1) and schedule
231 for type(1.9, 2). Clearly, this allocation rule violates IIA. The optimal payments to job 1 and 2 are
πf

1 (1, 1) = 0.8 andπf
2 (2, 2) = 1.6 respectively. For the optimal payment to job 3, we depict thetype

graph with associated arc lengths in Figure 2. The shortest path lengths from(1.9, 1) and (2, 2) to the
dummy node are−2.1 and−4, respectively. Hence,πf

3 (1.9, 1) = 2.1 andπf
3 (2, 2) = 4. Consequently,

Pmin(f) = 0.8 + 1.6 + 0.8 · 2.1 + 0.2 · 4 = 4.88. This proves the claim. �

0

0

0

0

1.9 2

−2
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1.9, 1 2, 1

1.9, 2 2, 2

td
3

Figure 2: type graph job 3

Theorem 5 Even for two symmetric agents,2 × 2-type spaces and uniform probability distributions, the
optimal mechanism is not efficient.

Proof. Consider the following example with two jobs,W1 = W2 = {1, 2} andP1 = P2 = {1, 2}. We
assume thatϕ1(i, k) = ϕ2(i, k) = 1

4 for i, k ∈ {1, 2}. On one hand, consider the efficient allocation rulefe,
which schedules the job with higher weight over processing time ratio first. On the other hand, regard the
so-calledw-rule, fw, that schedules the job with the higher weight first. In case of ties, both rules schedule
job 1 first. The expected start times are listed below.

ES1(fw, 1, 1) = ES1(fw, 1, 2) = 3/4

ES1(fw, 2, 1) = ES1(fw, 2, 2) = 0

ES1(fe, 1, 1) = ES1(fe, 2, 2) = 1/4,

ES1(fe, 1, 2) = 1,

ES1(fe, 2, 1) = 0,

ES2(fw, 1, 1) = ES2(fw, 1, 2) = 3/2

ES2(fw, 2, 1) = ES2(fw, 2, 2) = 3/4

ES2(fe, 1, 1) = ES2(fe, 2, 2) = 1,

ES2(fe, 1, 2) = 3/2,

ES2(fe, 2, 1) = 1/4.

The type graphs corresponding tofw for job 1 and 2 respectively are shown in Figure 3. From this, the
optimal payments can be computed as:
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Figure 3: type graphs for thew-rule for jobs 1 and 2
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Figure 4: type graphs for the efficient rule for job 1 and 2

πfw

1 (2, 1) = πfw

1 (2, 2) = 0,

πfw

1 (1, 1) = πfw

1 (1, 2) = 3/4,

πfw

2 (2, 1) = πfw

2 (2, 2) = 3/2,

πfw

2 (1, 1) = πfw

2 (1, 2) = 9/4.

Hence the (minimum) total expected payment for thew-rule is:

Pmin(fw) =
1

4

∑

j

∑

(i,k)

πfw

j (i, k) = 9/4.

The type graphs corresponding tofe for agent 1 and 2 respectively are shown in Figure 4.
From this, the node potentials that minimize payment can be computed as:

πfe

1 (1, 1) = πfe

1 (2, 2) = 1/2,

πfe

1 (2, 1) = 0

πfe

1 (1, 2) = 5/4,

πfe

2 (1, 1) = πfe

2 (2, 2) = 2,

πfe

2 (1, 2) = 5/2,

πfe

2 (2, 1) = 1/2.
Hence the (minimum) total expected payment in efficient ruleis:

Pmin(fe) =
1

4

∑

j

∑

(i,k)

πj(i, k) = 37/16.

Hence,Pmin(fe) > Pmin(fw). This is even true if we break ties randomly. Thus, the efficient allocation
is for some instances dominated by at least thew-rule and consequently does not correspond to the optimal
mechanism even in the most symmetric case possible in this setting. �
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