
Decomposition Algorithm for the
Single Machine Scheduling Polytope?

Ruben Hoeksma, Bodo Manthey, and Marc Uetz

University of Twente, Dept. Applied Mathematics, Enschede, The Netherlands
{r.p.hoeksma,b.manthey,m.uetz}@utwente.nl

Abstract. Given an n-vector p of processing times of jobs, the single
machine scheduling polytope C arises as the convex hull of completion
times of jobs when these are scheduled without idle time on a single ma-
chine. Given a point x ∈ C, Carathéodory’s theorem implies that x can
be written as convex combination of at most n vertices of C. We show
that this convex combination can be computed from x and p in time
O(n2), which is linear in the naive encoding of the output. We obtain
this result using essentially two ingredients. First, we build on the fact
that the scheduling polytope is a zonotope. Therefore, all of its faces are
centrally symmetric. Second, instead of C, we consider the polytope Q
of half times and its barycentric subdivision. We show that the subpoly-
topes of this barycentric subdivison ofQ have a simple, linear description.
The final decomposition algorithm is in fact an implementation of an al-
gorithm proposed by Grötschel, Lovász, and Schrijver applied to one of
these subpolytopes.

1 Introduction & Contribution

Given any point x in a d-dimensional polytope P , Carathéodory’s theorem im-
plies that x can be written as convex combination of at most d + 1 vertices of
P . We are interested in an algorithmic version of Carathéodory’s theorem for
a specific polytope, namely the polytope C that arises as the convex hull of
completion times of n jobs when these are sequenced non-preemptively without
idle time on a single machine. More specifically, we are given a vector of posi-
tive processing times p ∈ Rn+ and some x ∈ C, and our goal is to compute an
explicit representation of x by at most n vertices vi of C, such that x =

∑
i λiv

i

for λi ≥ 0 for all i and
∑
i λi = 1. We refer to this problem as decomposition

problem.
The polytope C, also known as the single machine scheduling polytope, is

well understood [13]. In particular, it is known to be a polymatroid, and the
separation problem for C can be solved in O(n log n) time. Therefore, the exis-
tence of a polynomial time decomposition algorithm follows from the ellipsoid
method [5]. A generic approach to compute a decomposition has been described
by Grötschel, Lovász, and Schrijver [6]. We call this the GLS method in the
following. Figure 1 depicts the idea behind the GLS method.

? For a full version of this extended abstract including all proofs, see [7].

1



P

f
v x

x′

Fig. 1. Illustration of the decomposition algorithm by Grötschel, Lovász, and Schrijver.
From some vertex v ∈ P , extend a half-line from v in direction x− v until it intersects
a lower dimensional face f of P in a point x′. The point x can be written as a convex
combination of v and x′. Recurse with this face f and the intersection point x′ to
obtain a convex combination of vertices of f that yields x′.

Yet, already Cunningham [3] remarked that it is interesting to find efficient
combinatorial decomposition algorithms for specific polymatroids and that it is
in general not straightforward to do so, even if the underlying optimization prob-
lem is well understood and can be solved efficiently. Decomposition of feasible
points into vertices also plays an important role in algorithms for submodular
function minimization, starting with work by Cunningham [2, 3] and including
the strongly polynomial time algorithms of Schrijver [15] and Iwata et al. [9].

Apart from this general motivation, the decomposition problem arises in the
design of efficient mechanisms for optimization problems in private information
settings [1, 8]. In such problems, feasible points correspond to so-called interim
(expected) allocations, which are computed as solutions to linear programming
formulations. The decomposition is needed to translate these interim allocations
back into actual implementations of the mechanism.

Let us sketch the state-of-the-art of the question to decompose a given point
in the scheduling polytope C into vertices of C. An O(n9) algorithm follows
directly from work by Fonlupt and Skoda [4] on the intersection of a line with a
(general) polymatroid using the GLS method. However, a closer look reveals that
an O(n3 log n) implementation is also possible [8]. Still, this result is unsatisfac-
tory in the following sense. For the permutahedron, Yasutake et al. suggested
an O(n2) decomposition algorithm [16]. The permutahedron is precisely the sin-
gle machine scheduling polytope for the special case where all processing times
are 1. Hence, the natural question is if their O(n2) algorithm can be generalized
to the scheduling polytope.

In this paper, we answer this question in the affirmative. Essentially, we show
two things. First, we show that there is an O(n2) decomposition algorithm for the
single machine scheduling polytope. The core of our algorithm remains the GLS
method. However, we apply the algorithm to a specific subpolytope of a polyhe-
dral subdivision of the polytope Q of half times, i.e., Q is obtained by shifting
C by half the processing times of the jobs: Q = C − p/2. Second, we augment
the algorithm by Yasutake et al. [16] by a simple, geometric interpretation. In
particular, this shows that also their algorithm is in fact an implementation of
the GLS method.

2



It should be mentioned that the idea of using half times, also referred to as
midpoints, is not new in scheduling. It has proven to be helpful particularly for
the design and analysis of approximation algorithms. Phillips et al. [12] were
probably the first to use half times to analyze an approximation algorithm, and
Munier et al. [11] were the first to use half times explicitly in the design of
approximation algorithms.

The crucial ingredient to get our results is to exploit that the scheduling
polytope is a zonotope. This means that all its faces are centrally symmetric. As
each of the centers of a given face has a representation by two vertices, it suffices
to decompose a given point into (certain) centers. To decompose a given point
into centers, we consider the polyhedral subdivision of the scheduling polytope
that is induced by these centers. This is also called a barycentric subdivision [10].
For the polytope of half times, we can show that this subdivision has a simple,
linear description, which we can exploit algorithmically.

We believe that our results are interesting due to the following reasons. First,
consider applying the GLS method directly to the scheduling polytope. In order
to obtain an O(n2) implementation, one would have to compute a face f and the
intersection point of the halfline through v and x with f in O(n) time in each
iteration. We do not see how to do this. Second, considering a naive, unit-cost
encoding of the output, the O(n2) implementation is only linear in the output
size. Third, our structural results shed new light on a well-studied object in
polyhedral combinatorics, the single machine scheduling polytope.

2 The Single Machine Scheduling Polytope

Consider a set N of n jobs. Job j ∈ N has processing time pj ∈ R+. Non-
preemptive schedules of jobs on a single machine are usually represented by
vectors of either starting times sj or completion times cj . For any non-preemptive
schedule without idle time, the starting time of job j is sj =

∑
k<j pk, where

k < j denotes that job k is scheduled before job j. Then the completion time of
job j is cj = sj + pj . For all sets K ⊆ N of jobs, let

g(K) :=
1

2

∑
j∈K

pj

2

.

Queyranne [13] defined the single machine scheduling polytope using comple-
tion time vectors c and showed that it is described by the following system of
inequalities:∑

j∈K
cjpj ≥ g(K) +

1

2

∑
j∈K

p2j for all K ⊂ N and (1)

∑
j∈N

cjpj = g(N) +
1

2

∑
j∈N

p2j . (2)

3



If pj > 0 for all j ∈ N , none of these inequalities is redundant, and the
dimension is n−1 [13]. Note that, for the degenerate case where pk = 0 for some
jobs k, we would have to add constraints 0 ≤ ck ≤

∑
j∈N pj in order to describe

the convex hull of schedules. However, for all algorithmic purposes that we can
think of, this degenerate case does not add anything interesting, since we can
simply eliminate such jobs and reintroduce them afterwards. In particular, this
is true for the problem we address here. Thus, we assume that pj > 0 for all jobs
j ∈ N from now on.

In this paper, it is convenient to represent a schedule by h, the vector of half
times, instead of by a vector of completion times. The half time of a job is the
time at which the job has finished half of its processing. We have

hj = sj +
1

2
pj = cj −

1

2
pj .

Equivalent to Queyranne’s description, the single machine scheduling poly-
tope in half times is completely described by∑

j∈K
hjpj ≥ g(K) for all K ⊂ N (3)

∑
j∈N

hjpj = g(N) , (4)

which is simply the scheduling polytope in completion times shifted by the vector
−p/2. Let Q denote the single machine scheduling polytope in half times. The
polytope Q is the set of all h ∈ Rn that fulfil (3) and (4).

The face lattice of the single machine scheduling polytope is well understood
[13]. Every (n − k)-dimensional face f of Q corresponds one-to-one with an
ordered partition of N into k sets. With an ordered partition, we mean a tuple
(S1, . . . , Sk) with Si ∩ Sj = ∅ for all i 6= j, i, j ∈ {1, . . . , k}, and

⋃k
i=1 Si = N .

The intended meaning is that inequalities (3) are tight for all Ti := S1 ∪ . . . ∪
Si, i ∈ {1, . . . , k}. This corresponds to convex combinations of all schedules
where jobs in Ti are scheduled before jobs in N \ Ti, for all i ∈ {1, . . . , k}.
The schedules correspond to the ordered partitions ({σ(1)}, . . . , {σ(n)}) for all
permutations σ. Each such ordered partition corresponds to a vertex of Q as
follows: let ({σ(1)}, . . . , {σ(n)}) be an ordered partition and v the vertex it
corresponds to, then

vσ(j) =
1

2
pσ(j) +

j−1∑
i=1

pσ(i) for all j ∈ N . (5)

3 Zonotopes

In this paper, we make heavy use of the fact that the scheduling polytope is a
zonotope.

4



Definition 1 (centrally symmetric polytope, zonotope). Let P ⊆ Rn be
a polytope. P is centrally symmetric if it has a center c ∈ P , such that c+x ∈ P
if and only if c − x ∈ P . If all faces of P are centrally symmetric, then P is
called a zonotope.

An equivalent definition of centrally symmetric is that there is a center c ∈ P
such that for all x ∈ P also 2c− x ∈ P .

Also zonotopes have alternative definitions. They are exactly the images of
(higher-dimensional) hypercubes under affine projections, and they are exactly
the Minkowski sum of line segments [17]. The standard textbook [17] example for
zonotopes is the permutahedron, which is the scheduling polytope in completion
times when all processing times are 1.

The scheduling polytope with arbitrary processing times is a zonotope, too.
This can be seen in several ways. For example, the scheduling polytope can be
obtained as affine transformation from a hypercube in dimension

(
n
2

)
via linear

ordering variables as follows [14, Thm. 4.1]: let the variable δij for i, j ∈ N , i < j
be ordering variables. The intended meaning that δij = 1 if and only if job i
is processed before job j. Then the vertices of this

(
n
2

)
-dimensional hypercube

correspond one-to-one with all permutations, and the halftime hj of any job j
can be computed by

hj =
1

2
pj +

∑
i<j

δijpi +
∑
i>j

(1− δji)pi .

We summarize this brief discussion with the following Theorem.

Theorem 2 (Queyranne & Schulz [14, Thm. 4.1]). The scheduling polytope
is a zonotope.

With respect to the centers of the faces of the scheduling polytope in half-
times, we have the following lemma.

Lemma 3. Consider an arbitrary face f of Q, defined by the ordered partition
(S1, . . . , Sk), then the barycenter (or center of mass) c(f) of f is given by

c(f)j =

i−1∑
`=1

∑
h∈S`

ph +
1

2

∑
h∈Si

ph for all j ∈ Si . (6)

Given that a face f of Q corresponds to some ordered partition (S1, . . . , Sk),
this is not difficult to verify. For a formal proof, we refer to the full version of
this paper [7]. In particular, observe that all j ∈ Si have the same value, and
the center of Q is the point c where all values ci coincide, i.e., c1 = . . . = cn.
Note that this is no longer true if we consider the scheduling polytope in start
or completion times. The property that all faces of a zonotope are centrally
symmetric, as well as the simple description of these centers by Lemma 3, will
be important for the design of the decomposition algorithm in Section 5.

5



4 Barycentric subdivision

Consider the following, polyhedral subdivision of the scheduling polytope Q. For
any vertex v of Q, define polytope Qcv as the convex hull of all barycenters c(f)
of faces f that contain v:

Qcv := conv{c(f) | v ∈ f} .

Then we have Q =
⋃
v Q

c
v. By construction, v is the only vertex of Q that is

also a vertex of Qcv. The subdivision thus obtained is also known as barycentric
subdivision [10].

Another polyhedral subdivision of the scheduling polytope Q is obtained by
subdividing the polytope according to orders as follows.

Definition 4. Let P ⊆ Rn be a polytope. We define a relation ∼ on P as
follows: for two points x, y ∈ P , we have x ∼ y if there exists a permutation
σ : {1, . . . , n} → {1, . . . , n} such that both xσ(1) ≤ . . . ≤ xσ(n) and yσ(1) ≤ . . . ≤
yσ(n).

Based on this definition, define for any vertex v ∈ Q the polytope

Qσv := {x ∈ Q | x ∼ v} .

Because every permutation σ is represented by a vertex of Q, we have Q =⋃
v Q

σ
v , and v is the only vertex of Q that is also a vertex of Qσv .

The following two lemmas encode the core and geometric intuition behind
the decomposition algorithm that we develop in Section 5. They show that the
two above polyhedral subdivisions are in fact equivalent. Thereby, we obtain an
explicit description of the barycentric subdivision in terms of vertices and facets.

Lemma 5. Let Q be the single machine scheduling polytope in half times, let v
be an arbitrary vertex of Q and let σ denote a permutation such that vσ(1) ≤
. . . ≤ vσ(n). Then Qσv has the following, linear description:

hσ(j) ≤ hσ(j+1) for all j ∈ {1, . . . , n− 1} , (7)

k∑
j=1

hσ(j)pσ(j) ≥
1

2

 k∑
j=1

pσ(j)

2

for all k ∈ {1, . . . , n− 1} , and (8)

∑
j∈N

hjpj =
1

2

∑
j∈N

pj

2

. (9)

Proof. Since Qσv ⊆ Q, (8) and (9) are satisfied for every point in Qσv . Since σ
is the only permutation with vσ(1) ≤ . . . ≤ vσ(n), we have that h satisfies (7) if
h ∼ v. Therefore, (7) holds for any point in Qσv .

It remains to be shown that (7), (8), and (9) imply h ∈ Qσv . Let h satisfy
(7), (8) and (9). For simplicity of notation and without loss of generality, let all

6



vectors be sorted such that hi ≤ hj if and only if i ≤ j. Then, for each j, we
have (

j∑
i=1

pi

)
hj ≥

j∑
i=1

pihi ≥
1

2

(
j∑
i=1

pi

)2

.

Thus, hj ≥ 1
2

∑j
i=1 pi for all j. Now suppose h satisfies (7), (8), and (9), but

h /∈ Q. Then there is a set K of minimal cardinality, such that (3) is not satisfied.
This means that ∑

i∈K
pihi <

1

2

(∑
i∈K

pi

)2

.

But then, for j = maxk∈K k, we have

∑
i∈K\{j}

pihi =
∑
i∈K

pihi − pjhj <
1

2

(∑
i∈K

pi

)2

− pjhj

≤ 1

2

(∑
i∈K

pi

)2

− pj
1

2

(
j∑
i=1

pi

)

≤ 1

2

(∑
i∈K

pi

)2

− pj
1

2

(∑
i∈K

pi

)
=

1

2

 ∑
i∈K\{j}

pi

2

.

This contradicts that K is a set of minimal cardinality that does not satisfy (3).
So (7), (8), and (9) imply h ∈ Q.

Now suppose h ∈ Q \Qσv , then h ∈ Qσv′ for some other vertex v′ ∈ Q, which
would imply that (7) is not valid for h. Hence, h ∈ Qσv . ut

Lemma 6. Let Q be the single machine scheduling polytope in half times. Then,
for all vertices v of Q, we have

Qcv = Qσv .

Proof. Lemma 3 implies that the vertices of Qcv are given by (6) for all f 3 v.
From (6), we have q ∼ v for any vertex q of Qcv. It follows that Qcv ⊆ Qσv .

Now, by Lemma 5, any vertex of Qσv is obtained by having n− 1 tight con-
straints among (7) and (8). Consider any such vertex q of Qσv .

Let ` ∈ {1, . . . , n− 1}. If (8) is tight for q for k = `, then (7) cannot be tight
for q for j = `. This is because if (8) is tight for q and k = `, then jobs 1, . . . , `
are scheduled before jobs `+ 1, . . . , n. Therefore,

q`+1 ≥
1

2
p`+1 +

∑̀
j=1

pj

and

q` ≤
1

2
p` +

`−1∑
j=1

pj .

7



Thus, q` < q`+1 since all processing times are assumed to be positive. This
implies that for any ` ∈ {1, . . . , n − 1}, we have that q satisfies exactly one of
the following: (8) is tight for k = ` or (7) tight for j = `. The inequalities (8)
that are tight for q induce an ordered partition (S1, . . . , Sk) that corresponds to
a face f 3 v. The inequalities (7) that are tight for q ensure that qj = qj+1 for
all j ∈ Si and any i ∈ {1, . . . , k}.

It follows that q = c(f) and, thus, q is a vertex of Qcv. Since this holds for
any vertex of Qσv , we have Qσv ⊆ Qcv. Thus, Qσv = Qcv. ut

For simplicity of notation, we define Qv := Qcv (= Qσv ).
Figure 2 illustrates the barycentric subdivision of the scheduling polytope.

It shows the scheduling polytope for three jobs together with its barycentric
subdivision (indicated by dashed lines). The subpolytope containing vertex v213
contains all vectors h ∈ Q for which h2 ≤ h1 ≤ h3. Its vertices are v213, and all
centers of faces on which v213 lies. Its facets are defined by h1p1 +h2p2 +h3p3 =
(p1 + p2 + p3)2 together with one of the following equalities:

h1p1 + h2p2 = (p1 + p2)2 ,

h2p2 = (p2)2 ,

h2 = h1 ,

h3 = h1 .

v123

v213 v231

v321

v312v132

1
2
v123 + 1

2
v213

1
2
v123 + 1

2
v132

1
2
v213 + 1

2
v231

Fig. 2. Barycentric subdivision of a scheduling polytope with three jobs. vijk denotes
the vertex corresponding to the order i, j, k

8



5 Decomposition Algorithm for the Single Machine
Scheduling Polytope

Based on Lemma 5, we next develop a decomposition algorithm for the schedul-
ing polytope that runs in time O(n2). This algorithm can be seen as a general-
ization of an algorithm recently proposed by Yasutake et al. [16] for the permu-
tahedron. We argue here that this algorithm is in fact an application of the GLS
method [6, Thm. 6.5.11]. Before giving the pseudo code for the decomposition
algorithm, we describe the high level idea.

We know that any point h ∈ Q lies in a subpolytope Qv of the barycentric
subdivision ofQ, namely for a vertex v for which v ∼ h according to Definition 4.1

Moreover, Qv is described by inequalities (7) and (8), and the vertices of Qv
consist of the points v+v′

2 for all vertices v′ ofQ. This means that a decomposition
of h into vertices of Qv also yields a decomposition into vertices of Q.

The idea of the algorithm is as follows: We find a decomposition of h into
vertices of Qv by using the GLS method [6, Thm. 6.5.11]. The idea of this
algorithm is illustrated in Figure 3: Given h = h1 ∈ Qv (we have v = v1),
we extend the difference vector h1 − v1 towards the intersection with a lower
dimensional face of Qv (this will be a facet of Qv, unless we accidentally hit
a face of even lower dimension). Then recurse with this intersection point and
the face on which it lies. To arrive at the claimed computation time, it is crucial
that both the intersection point and the face(t) on which it lies can be computed
in time O(n). This is indeed possible because of Lemma 5. As the number of
iterations is bounded by the dimension of Qv, which is equal to the dimension
of Q, this gives an O(n2) implementation. Finally, by the fact that all vertices

of Qv can be written as v+v′

2 for vertices v′ of Q, we obtain a decomposition of
h into at most n vertices of Q.

In order to describe the technical details of the algorithm, we use the following
notation.

v: vertex of Q corresponding to the permutation 1, 2, . . . , n; we have v = v1;
J t: set of indices associated with a face f t of Qv;
f t: face of Qv associated with J t such that xj = xj+1 for all x ∈ f t and all

j ∈ {1, . . . , n− 1} \ J t;
qt: vertex of f t;
vt: vertex of Q such that qt = 1

2 (v + vt);
ht: point in f t;
κ̃t: scalar such that ht = κ̃tq

t + (1− κ̃t)ht+1;
κt: scalar corresponding to qt in the convex combination h =

∑
t κtq

t.
λt: scalar corresponding to vt in the convex combination h =

∑
t λtv

t.

Moreover, for ease of notation and without loss of generality, we assume that
the given point h ∈ Q satisfies h1 ≤ . . . ≤ hn.2

1 In case of ties, h lies on the intersection of several of such subpolytopes, namely
those corresponding to vertices v with v ∼ h. We can break such ties arbitrarily.

2 This comes at the expense of sorting, which costs O(n logn) time and falls within
the O(n2) time complexity of the proposed algorithm.

9



Algorithm 1: Decomposition Algorithm

input : processing times p, point h ∈ Q with h1 ≤ . . . ≤ hn
output: at most n vertices vt of Q and coefficients κt ∈ [0, 1]

1 t := 1, h1 := h, J1 := {i ∈ {1, . . . , n− 1} | h1
i < h1

i+1};
2 let v be the vertex with v1 ≤ . . . ≤ vn;

while Jt 6= ∅ do
3 qt := VERTEX(Jt);
4 vt := 2qt − v;
5 κ̃t := minj∈Jt(htj+1 − htj)/(qtj+1 − qtj);
6 ht+1 := (ht − κ̃tqt)/(1− κ̃t);
7 Jt+1 := {i ∈ Jt | ht+1

i < ht+1
i+1};

8 κt := (1−
∑t−1
τ=1 κτ )κ̃t;

9 t := t+ 1;

10 qt := ht;
11 vt := 2qt − v;

12 κt := 1−
∑t−1
τ=1 κτ ;

13 λ1 := 1
2

+ 1
2
κ1;

for τ ∈ {2, . . . , t} do
14 λτ := 1

2
κτ ;

The subroutine VERTEX(J t) computes the vertex corresponding to the face
associated with J t as follows: Let J t(i) denote the i-th element in J t and define
J t(0) = 1. Then, for j ∈ {J t(i), . . . , J t(i+ 1)− 1}, we compute

qtj =

Jt(i)−1∑
k=1

pk +
1

2

Jt(i+1)−1∑
k=Jt(i)

pk .

Note that vertex qt can be computed in linear time per iteration by just com-

puting P ti :=
∑Jt(i+1)−1
k=Jt(i) pk for all i, in time O(n). Then, qt1 = 1

2P
t
1 , and for

j ∈ {J t(i), . . . , J t(i + 1) − 1} and k ∈ {J t(i + 1), . . . , J t(i + 2) − 1}, the values
for qt are computed iteratively as qtk = qtj + 1

2 (P ti + P ti+1).

Theorem 7. For any h ∈ Q, Algorithm 1 computes a convex combination of
vertices of Q for h in O(n2) time.

Proof (sketch). By lines 5 and 7 of the algorithm, the cardinality of J t strictly
decreases in each iteration. None of the steps within each of at most n − 1
iterations takes more than O(n) time, so the total computation time of the
algorithm is indeed O(n2). It remains to be shown that the pseudo code given in
Algorithm 1 indeed computes a correct convex combination for h. For a formal
proof of this claim, we refer to the full version of this paper [7]. ut

10



v1 = q1

v3

v2

h3 = c(Q)
h1

q2

h2

f2

Fig. 3. Visualization of the decomposition algorithm on a single machine scheduling
polytope for three jobs

6 Conclusions

The obvious question is if our algorithm can be generalized for zonotopes. In
order to do that, we would have to find explicit expressions for the centers of
symmetry, as well as the faces of the resulting barycentric subdivision that is
induced by these centers.

Acknowledgements

We thank Maurice Queyranne for pointing us to the paper by Yasutake et al. [16],
and Marc Pfetsch and Michael Joswig for helpful remarks concerning zonotopes.

References

1. Y. Cai, C. Daskalakis, and S. M. Weinberg. Optimal multi-dimensional mechanism
design: Reducing revenue to welfare maximization. In Proc. 53rd Ann. IEEE Symp.
on Foundations of Computer Science (FOCS), pages 130–139. IEEE, 2012.

2. W. H. Cunningham. Testing membership in matroid polyhedra. Journal of Com-
binatorial Theory B, 36:161–188, 1984.

3. W. H. Cunningham. On submodular function minimization. Combinatorica, 5:186–
192, 1985.

4. J. Fonlupt and A. Skoda. Strongly polynomial algorithm for the intersection of a
line with a polymatroid. In W. Cook, L. Lovász, and J. Vygen, editors, Research
Trends in Combinatorial Optimization, pages 69–85. Springer, 2009.

5. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

11



6. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

7. R. Hoeksma, B. Manthey, and M. Uetz. Decomposition Algorithm for the Sin-
gle Machine Scheduling Polytope. Technical Report TR-CTIT-13-25, CTIT, Uni-
versity of Twente. http://eprints.eemcs.utwente.nl/24023/

8. R. Hoeksma and M. Uetz. Two dimensional optimal mechanism design for a se-
quencing problem. In M. Goemans and J. Corréa, editors, Integer Programming
and Combinatorial Optimization, volume 7801 of Lecture Notes in Computer Sci-
ence, pages 242–253. Springer, 2013.

9. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial time
algorithm for minimizing submodular functions. Journal of the ACM, 48(4):761–
777, 2001.

10. C. W. Lee. Subdivisions and triangulations of polytopes. In Handbook of Discrete
and Computational Geometry, chapter 17. Chapman & Hall/CRC, 2nd edition,
2004.

11. A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems. In R. E.
Bixby, E. A. Boyd, and R. Z. Ŕıos-Mercado, editors, Integer Programming and
Combinatorial Optimization, volume 1412 of Lecture Notes in Computer Science,
pages 367–382. Springer, 1998.

12. C. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In S. G.
Akl, F. Dehne, J.-R. Sack, and N. Santoro, editors, Algorithms and Data Structures,
volume 955 of Lecture Notes in Computer Science, pages 86–97. Springer, 1995.

13. M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Pro-
gramming, 58(1):263–285, 1993.

14. M. Queyranne and A. S. Schulz. Polyhedral approaches to machine scheduling.
Preprint 408-1994, TU Berlin, 1994.

15. A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory B, 80:346–355, 2000.

16. S. Yasutake, K. Hatano, S. Kijima, E. Takimoto, and M. Takeda. Online linear
optimization over permutations. In Algorithms and Computation, volume 7074 of
Lecture Notes in Computer Science, pages 534–543. Springer, 2011.

17. G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.
Springer, 1995.

12


