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We consider a pricing problem in directed, uncapacitated networks. Tariffs have to be
defined by an operator, the leader, for a subset of m arcs, the tariff arcs. Costs of all
other arcs in the network are assumed to be given. There are n clients, the followers,
and after the tariffs have been determined, the clients route their demands independent
of each other on paths with minimal total cost. The problem is to find tariffs that
maximize the operator’s revenue. Motivated by applications in telecommunication
networks, we consider a restricted version of this problem, assuming that each client
utilizes at most one of the operator’s tariff arcs. The problem is equivalent to pricing
bridges that clients can use in order to cross a river. We prove that this problem is APX-
hard. Moreover, we analyze the effect of uniform pricing, proving that it yields both an
m–approximation, and a (1 + ln D)–approximation. Here, D is upper bounded by the
total demand of all clients. In addition, we consider the problem under the additional
restriction that the operator must not reject any of the clients. We prove that this
problem does not admit approximation algorithms with any reasonable performance
guarantee, unless P=NP, and we prove the existence of an n–approximation algorithm.
c© (Year) John Wiley & Sons, Inc.

Keywords: telecommunication networks; pricing; Stackelberg game; complexity; approximation

1. INTRODUCTION

The pricing problem that we study is a Stackelberg game that involves two non-
cooperative groups, an operator that sets tariffs, the leader of the Stackelberg game,
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and clients that have to pay these tariffs, the followers of the Stackelberg game. More
precisely, we assume that a network is given, and a subset of the arcs, the tariff arcs,
are owned by an operator. The operator can determine tariffs on these tariff arcs, while
the costs for utilizing all other arcs are assumed to be given. Each client wishes to route
a certain demand on a path connecting two vertices. We assume that after the tariffs
have been announced, each client selfishly selects a path with minimum total cost to
route her demand. Thus, before the clients select their paths, the operator has to set
the tariffs, which she does in order to maximize her total revenue. In order to avoid
non-boundedness, we assume that clients always have the alternative of routing on a
path without using any of the operators arcs.

Notice that this problem is different in two aspects from the network congestion prob-
lems studied recently, e.g., by Roughgarden and Tardos [12], and Cole et al. [4, 5]. First,
we assume that there is no congestion, hence the clients do not influence each other.
They choose minimum cost paths to route their demands, independent of each other. A
game theoretic setting is only present due to the fact that there exists an operator trying
to maximize the total revenue, and the clients effectively minimize the total revenue by
choosing minimum cost paths. Second, due to the fact that the pricing takes place before
the clients choose their paths, we are faced with a Stackelberg game. Notice that the
second phase of this Stackelberg game is indeed trivial, since the clients are independent
of each other.

1.1 Model

In order to clarify the relation to previous work, we first formulate the general network
pricing problem, and then discuss the restricted version considered in this paper.

An instance of the general network pricing problem is a directed graph G = (N,A),
where the arc set A is partitioned into a set of m tariff arcs T ⊆ A and a set of fixed cost
arcs F = A \ T . There are n clients (or commodities) k ∈ {1, . . . , n}, and each client k
has a demand dk that has to be routed from source node sk to target node tk

1. Without
loss of generality, we assume that all demand values dk are scaled to be integral. The
tariff for the utilization of any tariff arc a ∈ T must be determined by the operator; it
is denoted by τa. The tariff for the utilization of any fixed cost arc is assumed to be
given for all fixed cost arcs. The clients route their demands from source to destination
through a path with minimal total cost, where the total per unit cost of a path is defined
as the sum of the tariffs and fixed costs on the arcs of the path. Whenever the client
has a choice among multiple paths with the same total cost but with different revenues
for the operator, we assume that the client takes the path that is most profitable to the
operator. (This can always be achieved with arbitrary precision by reducing tariffs by
some small value ε.) We assume that an (sk, tk)-path exists consisting only of fixed cost
arcs for every client k ∈ {1, . . . , n}, since the problem is otherwise unbounded. Without
going into further details, we mention that this problem is a classical Stackelberg game
that can be modelled as a bilinear bilevel program [10].

1Notice that we abuse standard notation from Graph Theory, since m denotes the number of
tariff arcs, and n denotes the number of clients in the given digraph G = (N, A). This because
the actual number of nodes and arcs of G are of minor interest for the present paper.
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We next describe a simple transformation of the given graph G that allows one to
restrict to very specific graphs (although probably losing certain graph properties, such
as planarity). When we replace all shortest paths that only consist of fixed cost arcs
by direct arcs, and possibly introduce additional dummy arcs with zero or infinite cost,
respectively, we obtain a shortest path graph model as described by Bouhtou et al. [3].
After this transformation, we can assume that all tariff arcs are pairwise disjoint, and
there exists a direct arc from the source node sk to the tail node of any tariff arc a, and
a direct arc from the head node of any tariff arc a to any target node tk. Moreover,
there exists a fixed cost arc (sk, tk) for all clients k = 1, . . . , n, and the fixed cost for
that arc, which we denote by uk, represents the cheapest possible (sk, tk)-path (in the
original graph) without using any of the tariff arcs. In other words, uk represents the
highest acceptable total per unit price for client k.

The additional assumption in the problem considered in this paper, to which we refer
as the river tariff pricing problem (RTP), is the following: Independent of the tariffs, we
assume that any client routes her demand on a path that includes at most one tariff arc.
In Section 1.2, we discuss practical applications for this model, motivated by problems
in telecommunication networks. In the shortest path graph model, this restriction is
equivalent to the deletion of any backward-arc that might exist between head nodes of
tariff arcs and tail nodes of other tariff arcs. Figure 1 illustrates the shortest path graph
model of an instance of the river tariff pricing problem with three tariff arcs and two
clients. The tariff arcs ai, i ∈ {1, 2, 3} are the dashed arcs in the network. We may

u2

u1

s

s
a1

a

a

2

3

t22

1 t1

Figure 1. River tariff pricing problem (RTP) with n = 2 clients and m = 3 tariff arcs.

also assume without loss of generality that all fixed cost arcs incident with the target
nodes tk have zero cost, because otherwise we can just add their costs to the fixed cost
arcs incident with source nodes sk. Therefore, let us denote by cka the cost of the arc
that connects customer k to tariff arc a. The value uk − cka then represents client k’s
highest acceptable tariff for utilizing tariff arc a. It can as well be interpreted as client k’s
valuation for tariff arc a. Notice that the only difference to the general network pricing
problem described previously is the non-existence of backward arcs in the shortest path
graph model.

To summarize, the parameters that define an instance of a river tariff pricing problem
are the number of tariff arcs m, the number of clients n, their demand values dk, k ∈
{1, . . . , n}, and the costs for fixed cost arcs. We have cka as the cost of the fixed cost arcs
that connect customers k to tariff arcs a, and uk as the cost of arc (sk, tk), the highest
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acceptable cost for client k. Due to the fact that any path taken by a client involves
exactly one fixed cost arc with non-zero cost, we may assume without loss of generality
that the costs cka of these fixed cost arcs are integral. Moreover, due to the integrality of
the costs of the fixed cost arcs, it follows that any solution utilizing non-integral tariffs
can be straightforwardly improved. Notice that this might not be true for the general
network pricing problem, where a path chosen by a client can consist of more than one
tariff arc.

1.2 Applications

The present study of the river tariff pricing problem as described above is motivated
by practical interest from the telecommunications industry; it was carried out within a
joint research project initiated by France Télécom and Maastricht University.

An instance of the problem arises, for example, when considering the international
interconnections market, where several operators offer telecom connections to a particu-
lar country. Focussing on the market for entering a particular country – France in our
example – France Télécom asks what tariffs it should use for its proprietary connections
into the country such as to maximize revenue. There are several other operators com-
peting with France Télécom by offering similar services. For a schematic illustration see
Figure 2. Here, the dashed lines depict the connections offered by the operator (tariff

Figure 2. International interconnections market.

arcs) and the solid lines depict the connections offered by the competitors (fixed cost
arcs). It is a common practice that once the data of a client enters the local network of
the destination country this data will be transmitted to the destination point without
leaving and reentering the local network. So, given the set of clients willing to transmit
their data to France and the prices of the competitors, the operator would like to deter-
mine prices for the tariff arcs such as to maximize her total revenue, therefore facing an
instance of the river tariff pricing problem.

Another telecom application for the problem at hand is point-to-point markets, where
an operator is offering bandwidth capacity between two points A and B. Other operators
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are active in this market as well. Their prices for bandwidth capacity are known. Clients
can choose between different levels of Quality of Service (QoS) from each operator, and
clients have a preference for the QoS-levels. We can model this problem as an instance of
the river tariff pricing problem, too. Figure 3 shows a small example with two customers,
represented by two commodities (s1, t1) and (s2, t2). The operator has three QoS levels,

QoS2

QoS1

QoS3s2

s1
t

t

q

q1t

q

q

1

2

3t

2tq2s

q1s

3s

Figure 3. Point-to-point markets.

represented by the subnetwork between the nodes qis and qit, where i ∈ {1, 2, 3}. In
this example, customer (s1, t1) is interested in two QoS levels, namely QoS1 and QoS2,
whereas customer (s2, t2) is interested in QoS2 and QoS3. The preference of each cus-
tomer k with regard to each QoS level is determined by the cost of the edge from the
source sk to the node qis, i ∈ {1, 2, 3}, smaller cost indicating a higher preference for the
QoS level. The prices of other operators for the same QoS level is given by the cost on
the (fixed cost) arcs (qis, qit), i ∈ {1, 2, 3}. The revenue for the operator for each QoS
level i, i ∈ {1, 2, 3} is then determined by setting appropriate tariffs on the tariff arcs
(dashed arcs).

1.3 Related work

A formulation of the general network pricing problem is the bilinear bilevel program
described by Labbé et al. [10]. They show, among other things, that already the problem
with a single client is strongly NP-hard, given that also non-negative tariffs are allowed.
Roch et al. [11] prove NP-hardness for the same problem with non-negative tariffs, and
propose a polynomial time (1+1/2 ln m)–approximation algorithm for the problem with a
single client, where m is the number of tariff arcs. This result implies also a O(n log m)–
approximation for the case of multiple clients. In the present paper, we consider the
problem restricted to the case where each client utilizes at most one tariff arc, and we
consider the case of multiple clients.

In fact, the problem at hand can equivalently be interpreted as a pricing problem
for multiple products, where the tariff arcs a ∈ T correspond to different products,
and each client k is interested in buying dk units of one product. Since we consider
uncapacitated networks, products are available in unlimited amount (e.g., bulk or digital
goods). Whenever there is an arc between a client k and a tariff arc a in the river tariff
pricing problem, the interpretation is that client k is interested in buying product a. If
she decides to buy product a, she incurs a per unit shipment cost of cka, in addition to
the per unit cost of τa for product a. The fixed cost uk of the fixed cost arc (sk, tk) is
simply interpreted as the maximum total (per unit) price a client k is willing to pay to
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purchase any of the products. In other words, uk− cka represents client k’s valuation for
product a.

After this discussion, we can exhibit a close relation of the river tariff pricing problem
considered in this paper to other papers that address multi-product pricing problems.
Recently, two groups of researchers, independently of each other, reported several results
for such problems. Aggarwal et al. [1], among other things, consider a multi-product
pricing problem where any client k has different budgets bka for different products a,
which are available in unlimited amount. The operator has to determine prices for the
products in order to maximize the total revenue, under the assumption that a client
buys (one unit of) the cheapest product among the products she can afford. Aggarwal
et al. [1] prove APX-hardness of this problem, together with a (1 + lnn)-approximation
algorithm. Notice that, despite of the obvious similarities, the multi-product pricing
problem is conceptually different from the river tariff pricing problem considered in this
paper. In the river tariff pricing problem problem, clients choose the product with
minimum total per unit cost, also taking into account the shipment costs cka, rather
than the cheapest product among all affordable products.

Guruswami et al. [8] consider a profit-maximizing envy-free pricing problem. Clients
have different valuations for different products, and each product is available in limited
amount. The operator has to determine prices for the products, and allocate the products
to clients such that, again, total revenue is maximized, and given the pricing, no client
would prefer to be assigned a different product. Here, the clients measure their prefer-
ences in terms of the difference between their valuation and the purchase price. If the
price is higher than the clients’ valuation, then the client does not purchase the product.
In fact, the profit-maximizing envy-free pricing problem with unlimited supply of prod-
ucts is equivalent to the river tariff pricing problem considered here. Guruswami et al. [8]
independently prove APX-hardness of the problem, and derive a (2 lnn)-approximation
algorithm for the case of unit demand of clients, and with limited supply of products.

1.4 Our results

In this paper, we derive several results concerning complexity and approximability of
the river tariff pricing problem. In Section 2.1, by a reduction from the Max-2-Sat-3
problem, we show that the river tariff pricing problem is APX-hard, even if each client
is connected to at most two tariff arcs. Hence, the problem does not admit a polynomial
time approximation scheme, unless P=NP. This result coincides with the APX-hardness
result of Guruswami et al. [8]; obtained independently. The quality of uniform tariff
pricing policies, where all arcs are priced with the same tariff, is analyzed in Section 2.2
The problem to find an optimal uniform tariff is solvable in polynomial time by simple
enumeration. We show that uniform tariff pricing is an m–approximation, and this is
tight. Using a simple geometric argument, we also show that uniform tariff pricing is a
(1 + ln D)–approximation, which is tight up to a constant factor. Here, D is the total
demand that is served by the operator in an optimal solution, which is clearly upper
bounded by the total demand. Hence, whenever the clients have unit demand, our result
yields a (1+ ln n)–approximation. In Section 2.3, we empirically analyze and discuss the
quality of uniform tariff pricing policies using instances of international interconnection
markets provided by France Télécom.

In Section 3., we consider another variant of the problem, namely where the operator
is not allowed to reject any client. We refer to that variant as all-service river tariff
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pricing problem, or all-service RTP. Notice that rejecting clients might increase the total
revenue, since some clients might exist that can only be served at a low price, while others
would be willing to pay much more. We show, by a reduction from the Independent
Set problem, that the all-service RTP problem does not allow approximation to within
a factor O(m1 - ε) or O(n1/2 - ε), unless P=NP. (Recall that m is the number of tariff
arcs and n is the number of clients.) On the positive side, we can show that the problem
admits an n-approximation.

2. RIVER TARIFF PRICING: COMPLEXITY AND APPROXIMATION

We first discuss the computational complexity of the river tariff pricing problem.
Subsequently, we derive bounds on the quality of uniform tariff pricing policies, where
all tariffs are required to be identical, and finally, we briefly discuss these result on the
basis of problem instances from France Télécom.

2.1 Complexity

In a conference version of this paper [7], we proved that the river tariff pricing prob-
lem is (strongly) NP-hard by a reduction from 3-Satisfiability. Here we present a
modification of that reduction that yields a stronger result, namely APX-hardness of the
river tariff pricing problem. Thereby we can exclude the existence of a polynomial time
approximation scheme, unless P=NP. Notice that this result coincides with the APX-
hardness of the profit maximization problem considered by Guruswami et al. [8]. Also
notice that Roch et al. [11] show that the general network pricing problem is strongly
NP-hard, even when restricted to a single client. Their reduction works for tariff pricing
problems where paths are allowed to use (and indeed, must use) several tariff arcs. In
a certain sense, the problem that we consider here is ‘dual’ to theirs, as we restrict to a
single tariff arc, but allow for more than one client.

THEOREM 1: (See also Guruswami et al [8].) The river tariff pricing problem is
APX-hard, even when each client is connected to at most two tariff arcs, and if the costs
of the fixed cost arcs are restricted to be 0, 1 or 2.

PROOF: We use an approximation preserving reduction from Max-2-Sat-3: Given
a set of boolean variables X = {x1, . . . , xn} and a collection C of clauses over X such
that each clause consists of at most two variables and each variable occurs in at most 3
clauses, the question is to find a truth assignment that satisfies the maximum number of
clauses. This problem is known to be APX-hard, see e.g. [2].

For each variable xi, i ∈ {1, . . . , n} of the Max-2-Sat-3 instance, we construct a
constant-size subnetwork as shown in Figure 4. Each of these subnetworks has three
clients with unit demand. For each variable xi, let the origin-destination pairs of these
clients be denoted by {sij , tij}, j ∈ {1, 2, 3}. Moreover, each subnetwork has two tariff
arcs, one denoted by ai representing the truth assignment xi = 1, and one denoted by āi

representing xi = 0.
An upper bound on the cost of routing commodities 1 and 3 is given by fixed cost arcs

(si1, ti1) and (si3, ti3), each with cost 2. For commodity 2, the upper bound on the cost
is given by a fixed cost arc (si2, ti2), with cost 1.

Next, for each clause Ck, k ∈ {1, . . . ,m}, we create a clause-commodity k with origin
destination pairs {sk, tk}, with unit demand. Whenever a variable xi (x̄i, respectively)
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Figure 4. Subnetwork for variable xi, i ∈ {1, . . . , n}.

appears in clause Ck, we connect sk to si1 (si3, respectively), and ti1 (ti3, respectively)
to tk, using arcs of zero cost. In addition, we introduce a fixed cost arc (sk, tk) with
cost 1, defining an upper bound of 1 for the cost of routing clause-commodity k. The so-
defined instance of the river tariff pricing problem has 2n tariff arcs, 3n+m commodities
(or clients), and at most 7m + 11n fixed cost arcs, hence the transformation is indeed
polynomial.

We claim that an optimal solution of this instance of the river tariff pricing problem
yields a revenue of 4n + r, where r denotes the maximum number of satisfied clauses in
the Max-2-Sat-3 instance. Indeed, when given a truth assignment specifying xi, we set
the tariff of arc ai (āi) to 1, and the tariff of arc āi (ai) to 2 if xi is true (if xi is false). By
observing that the maximal revenue for each subnetwork equals 4, and that we obtain
1 for each clause-commodity corresponding to a satisfied clause (by routing its demand
via the tariff arc with a tariff of 1), we find a solution with value 4n + r.

Conversely, we now argue that in an optimal solution each subnetwork contains one
tariff arc with tariff 1, and the other tariff arc with tariff 2. Indeed, notice that it does not
make sense to use any other values for the tariffs. Further, if both tariffs equal 2, we can
decrease one tariff to 1 without lowering the revenue. Moreover, if in some subnetwork
both tariffs equal 1, there is one tariff arc through which at most one clause commodity
is routed (this follows from the fact that each variable occurs at most three times in all
clauses). When raising this tariff from 1 to 2, we are compensated for this loss of at
most 1 by the corresponding commodity in the subnetwork which brings an additional
revenue of 1.

Thus, we conclude that the tariff arcs with value 1 define a valid truth assignment, and
the corresponding revenue is at most 4n + r. Hence an inapproximability gap for Max-
2-Sat-3 translates to an inapproximability gap for the river tariff pricing problem.

Observe that we have delineated a borderline between easy and hard instances of
the river tariff pricing problem, since if each client is connected to at most one arc the
problem is trivial, while in the described reduction each client is connected to at most
two tariff arcs. Guruswami et al [8] independently presented another reduction from a
restricted version of the vertex cover problem, yielding exactly the same conclusions.
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2.2 The quality of uniform tariff pricing

The uniform tariff pricing problem (UTP) is the same as the general tariff pricing
problem, with the additional restriction that all tariffs are required to be identical. An
optimal uniform tariff can be found in time O(nm) by just enumerating all tariffs of the
form uk − cka, k = 1, . . . , n, a = 1, . . . , m. Clearly, any uniform price other than that
cannot be optimal, since the tariffs could be increased by some positive amount without
losing any client.

We next analyze the loss that can be experienced by adopting such a uniform tariff
pricing policy for the river tariff pricing problem. Therefore, denote by ΠUTP the revenue
for an optimal uniform tariff pricing, and by ΠRTP the revenue for an optimal non-uniform
tariff pricing. By definition, ΠUTP ≤ ΠRTP.

LEMMA 2: If an optimal solution to the river tariff pricing problem with revenue
ΠRTP utilizes at most r different tariffs, then ΠUTP ≥ ΠRTP/r, where ΠUTP is the optimal
revenue for the case with the uniform tariff restriction.

PROOF: Consider an optimal solution to the river tariff pricing problem with non-
uniform tariffs τ1 ≤ · · · ≤ τm, and let Di be the total demand on an arc ai with tariff τ i,
i ∈ {1, . . . , m}. By D =

∑n
k=1 Dk we denote the total demand served by the operator.

Then the revenue created by this solution is the area under the following ‘staircase’
function f : [0, D] → [0,∞[, depicted in Figure 5.

f(x) = τ i for all x with
∑

j<i

Dj ≤ x <
∑

j≤i

Dj , i ∈ {1, . . . , m}. (1)
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τ

Figure 5. Staircase function f(x) with inscribed maximal rectangle.

Consider any of the rectangles inscribed under the graph of function f(x), with area
Ti := τ i ·

∑
j≥i Dj . Then it holds that ΠUTP ≥ Ti for all i ∈ {1, . . . ,m}, since the area of

any such rectangle is a lower bound for the revenue yielded by the optimal uniform tariff
ΠUTP. (Notice that this does not hold for the general network pricing problem.) Hence,
if only r different tariffs are utilized, we consider the r (inclusion-)maximal rectangles
under function f , say Ti1 , . . . , Tir , and get r ·ΠUTP ≥ ∑r

j=1 Tij ≥ ΠRTP.

Since r ≤ m, Lemma 2 yields the following theorem. Tightness of the result will be
shown below, using Example 1.
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THEOREM 3: Uniform tariff pricing is an m–approximation for the river tariff
pricing problem.

We next derive an another bound on the quality of uniform tariff pricing policies,
developing further the same geometric argument.

THEOREM 4: Uniform tariff pricing is a (1 + lnD)–approximation for the river
tariff pricing problem, where D ≤ ∑n

k=1 dk is the total demand that is served by the
operator in an optimal solution.

PROOF: Consider an optimal non-uniform tariff pricing, and recall the definition
of the corresponding staircase function f in (1), as well as the inscribed rectangles, with
areas Ti = τ i ·

∑
j≥i Dj . Let ` be the index of the maximal area rectangle among all Ti,

with area T`. Let x` :=
∑

j≥` Dj = T`/τ `. Moreover, denote by τmax the maximal tariff
utilized in that optimal solution. We show

ΠUTP ≥ ΠRTP

1 + ln(Dτmax/T`)
. (2)

Then, the result follows from (2) because, by definition, T` ≥ τmax. To prove (2), let

g(x) :=
T`

D − x
for x ∈ [0, D) . (3)

We claim that g(x) ≥ f(x) for x ∈ [0, D). To see this, take any x with
∑

j<i Dj ≤ x <∑
j≤i Dj , then f(x) = τ i by definition. Furthermore, the following holds

g(x) =
T`

D − x
≥ T`

D −∑
j<i Dj

=
T`∑

j≥i Dj
=

T`

Ti/τ i
≥ τ i = f(x) ,

where the first inequality follows by choice of x, and the last follows because ` is the
index of the largest rectangle.

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���

���
���
���

g(x)

Tl

D

lτ

maxτ

x l

Figure 6. Illustration for the proof of Theorem 4.

Hence, the area under the function g(x), 0 ≤ x ≤ D, is a valid upper bound for the
area under the staircase function, which equals ΠRTP, see Figure 6. To compute the
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area under the function g(x), 0 ≤ x ≤ D, we partition it into three parts, namely the
rectangle T` itself, the area under g(x) on the domain x ∈ [0, D − x`], as well as the
area to the right of g(x) for g(x) ∈ [τ `, τmax]. The latter is the integral of the function
D − g−1(τ) = T`/τ on the domain [τ `, τmax]. We thus obtain the following.

ΠRTP ≤ T` +
∫ D−x`

0

T`

D − x
dx +

∫ τmax

τ `

T`

τ
dτ

= T`[1 + ln D + ln τmax − ln τ ` − ln x`]
= T` [1 + ln(Dτmax/T`)] .

Then, (2) follows from the above because T` ≤ ΠUTP.

In the case of unit demands of the clients, that is, if dk = 1 for all clients k = 1, . . . , n,
we obtain the following.

COROLLARY: Whenever clients have unit demands, uniform tariff pricing is a
(1 + ln n)–approximation for the river tariff pricing problem.

Finally, let us show tightness of the bounds in Theorems 3 and 4.

EXAMPLE 1: Given n=m clients and m tariff arcs. Every client is operating her
own subnetwork with one tariff arc, thus the entire network consists of m disjoint sub-
networks and each of them contains one client and one tariff arc. Fix b > 1 and let the
demand of client k in subnetwork k be given by dk = bk − bk−1, k ∈ {1, . . . , m}. This
way, the total demand equals bm − 1. Moreover, the maximal revenue for subnetwork k
is limited by a fixed cost arc (sk, tk), with cost uk = b2m−k. Hence, the maximal tariff
τmax equals b2m−1. See Figure 7 for an example with n = m = 4.

0 0
22 ts

0 0
33 ts

0 0
44 ts

0 0
11 ts

u

u u

u1

2

3

a

aa

a1

2 4

3

4

Figure 7. The analysis of uniform pricing is tight.

In the optimal solution, the tariff for each subnetwork k is set to its maximal value,
b2m−k. Each subnetwork therefore contributes a revenue of b2m − b2m−1, and ΠRTP =
m(b2m − b2m−1). The optimal uniform pricing consists in setting the tariff on all tariff
arcs to bm. This way, every unit of demand creates a profit of bm, yielding a total revenue
of b2m−bm. Other uniform tariffs would be values b2m−k, k ∈ {1, . . . , m−1}. This yields
a total revenue of b2m − b2m−k, which is less. Therefore, we obtain

ΠUTP/ΠRTP =
b2m − bm

m(b2m − b2m−1)
≤ b2m

m(b2m − b2m−1)
=

1
m
· b

b− 1
.
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Now, observe that in the optimal solution m different tariffs are utilized. Lemma 2
(Theorem 3, respectively) suggests that uniform pricing provides an m–approximation.
Example 1 proves that this is best possible, since b can be chosen arbitrarily large.

Moreover, Theorem 4 suggests that uniform pricing is a (1 + ln D)–approximation. In
Example 1, we have D = (bm − 1) and thus (1 + ln D) = 1 + ln(bm − 1) ≤ 1 + m ln b.
Hence, Theorem 4 yields that uniform pricing is a O(m)–approximation on this example.
The same Example 1 shows that O(m) is indeed best possible. The above discussion
leads to the following result:

THEOREM 5: For uniform tariff pricing, the performance bound of Theorem 3 is
best possible, and the performance bound of Theorem 4 is best possible up to a constant
factor.

2.3 Discussion

Notice that claim (2) in the proof of Theorem 4 confirms the following intuition: If
the staircase function f(x) approximates the straight line x 7→ (τmax/D) · x, geometric
intuition suggests that uniform tariff pricing yields a 2-approximation, since the size of
the largest rectangle inscribed under f(x) would be of exactly half of the area under
f(x). In that case, T` approximately equals Dτmax/4, and our analysis indeed yields an
approximation ratio of (1+ ln 4) ≈ 2.4 for uniform tariff pricing, the additional 0.4 being
caused by the difference between the functions g(x) and f(x).

Notice also that the worst case example, Example 1, crucially hinges on a staircase
function f(x) that approximates a hyperbola; in particular it requires exponential prices.
Thus, it can be conjectured that the empirical performance of uniform tariff pricing
policies on practical instances, where the price range is subexponential, outperforms
the theoretical bounds we have found. Our experiments, using data from the France
Télécom interconnections market, are summarized in Figure 2.3 and they corroborate
this conjecture.

Instance |N | |A| m n ΠRTP ΠUTP %

RTN1 29 94 7 15 841 624 74%

RTN2 29 98 6 21 4099 3496 85%

RTN3 59 206 10 13 1118 880 79%

RTN4 59 204 10 20 2217 1512 68%

RTN5 49 120 9 21 74948 55968 74%

RTN6 33 116 15 12 28166 20328 72%

RTN4

Figure 2.3: Uniform pricing on France Télécom instances.

The table on the left of Figure 2.3 shows data for 6 instances that represent telecom-
munication networks for the international interconnections market, as described in Sec-
tion 1.2 We compare the optimal solution values for uniform tariffs ΠUTP and non-uniform
tariffs ΠRTP. The optimal non-uniform solution is calculated using the model and mixed
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integer programming formulation described by Bouhtou et al. [3]. The value of ΠUTP

is calculated using the same formulation, requiring that all tariffs be equal. We do not
compare the actual computation times here, but are only interested in effectiveness of the
optimal uniform pricing. The table gives a brief description of each network, stating the
number of nodes |N |, arcs |A|, tariff arcs m, and clients n. The optimal non-uniform and
uniform solution values are displayed in the columns ΠRTP and ΠUTP. The final column
is the approximation ratio. The graphs on the right of Figure 2.3 show the staircase
function f(x) for the optimal non-uniform solution, as well as the best uniform solution,
for instance RTN4.

3. ALL-SERVICE RIVER TARIFF PRICING

In this section, we consider the following variation of the river tariff pricing problem.
The operator must set tariffs in order to capture the demand of all clients, that is, tariffs
must be such that no client k is forced to use the arc (sk, tk). We refer to this problem
as the all-service river tariff pricing problem.

It follows from trivial examples that the maximal revenue for the all-service problem
can be an arbitrary factor away from the maximal revenue without the all-service con-
straint. Hence, we have an arbitrarily high ‘cost of regulation’, where the regulation
consists of the fact that we force the operator to serve all clients. Notice that in case
uk < cka for some clients k and tariff arcs a, the operator might even be forced to use
negative tariffs, up to the extreme case where the optimal revenue becomes negative. In
such a situation, the notion of approximation algorithms is senseless. Hence, with respect
to approximability, we consider the special case where uk ≥ cka for all clients k and tariff
arcs a. We show that even for this restriction, the maximal revenue for the all-service
river tariff pricing problem cannot be approximated within any reasonable bound.

THEOREM 6: For any ε > 0, the existence of a polynomial time approximation
algorithm for the all-service river tariff pricing problem with n clients and m tariff arcs
with worst case ratio O(m1-ε) or O(n1/2-ε) implies P=NP.

PROOF: We use an approximation preserving reduction from Independent Set
[6] to the all-service problem. The Independent Set problem asks for finding in a
graph G = (V, E) a maximum cardinality subset V ′ ⊆ V such that no two vertices in V ′

are connected by an edge. The transformation works as follows. For every vertex v ∈ V
we introduce a client with origin-destination pair {sv, tv} and demand dv = |E|, and a
corresponding tariff arc av. We connect the source sv to the tail of the tariff arc av, and
the head of av to the destination tv, using zero cost fixed cost arcs. Moreover, there is
a fixed cost arc (sv, tv) with cost (|V | + 1) for all vertices v ∈ V . For every edge e ∈ E
we introduce a client with origin-destination pair {se, te} and unit demand. The upper
bound on the cost of routing this demand is given by the fixed cost arc (se, te) with cost
1. For all edges e ∈ E and all vertices v ∈ V with v ∈ e, we furthermore introduce fixed
cost arcs (se, tail(av)) and (head(av), te), with zero cost. This transformation results in
an instance of the all-service problem with |V | tariff arcs, and |V |+ |E| clients. Figure 8
gives an example of such a transformation for a graph G = (V, E) with 3 nodes and 2
edges.

We claim that G has an independent set of cardinality at least k if and only if there
exists a tariff policy for the all-service problem with a total revenue of |V ||E|(k+1)+ |E|.
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First, assume that G has an independent set V ′ of cardinality k. For all v ∈ V ′, set
the tariff on the corresponding tariff arc av to |V | + 1, and all other tariffs to 1. By
the definition of an independent set, for any edge e = (v, u) ∈ E at least one of the
vertices, v or u, is not in V ′. Therefore, the tariff of at least one of the tariff arcs, av or
au is 1. All clients corresponding to an edge e can thus be served, using one of the tariff
arcs av or au. The clients (sv, tv) corresponding to the vertices v ∈ V are also served,
since the upper bound of |V | + 1 is not exceeded with the so-defined tariffs. Hence, all
demands are served. The revenue consists of |E| from all clients corresponding to the
edges E of G, |E|(|V | + 1)k from the clients corresponding to the independent set V ′,
and |E|(|V | − k) from the clients corresponding to V \V ′. That yields a total revenue of
|E||V |(k + 1) + |E|.

1

2

3

ba

a2 a3a1
|V|+1 |V|+1 |V|+11 1

t t t t t

sbs1

1 a 2 b 3

s2sa s3

Figure 8. Reduction of Independent Set to all-service pricing problem.

Conversely, assume that there exists a set of tariffs that captures all demands, such
that the revenue is |E||V |(k + 1) + |E|. We will show that this implies that the graph G
has an independent set of cardinality at least k. Since all demands are captured at this
tariff pricing policy, for any edge e = (v, u) ∈ E, the tariff on at least one of the arcs, av

or au, is 1. Consider the set of vertices V ′ := {v ∈ V : tav > 1}. By definition, no pair
of nodes v, u ∈ V ′ is connected by an edge. Hence, V ′ is an independent set in G. Let
k′ := |V ′|. The revenue is equal to |E|+|E|(|V |−k′)+|E|(|V |+1)k′ = |E||V |(k′+1)+|E|,
which by assumption is at least as large as |E||V |(k + 1) + |E|. This implies that k′ ≥ k
and thus that V ′ is an independent set in G of cardinality k′ ≥ k.

Now, let us assume that we have an α-approximation algorithm A for the all-service
problem, with α ≥ 1. Consider any instance G = (V, E) of Independent Set, and the
all-service problem resulting from the above reduction. We can assume that both the
optimal solution and the solution produced by A only utilize tariff values 1 or |V | + 1,
because any tariff greater than 1 and not equal to |V |+1 can be turned into |V |+1 with
a revenue gain. So ΠRTP = |E||V |(k +1)+ |E| for some k, and ΠA = |E||V |(k′+1)+ |E|
for some k′. The first part of the proof yields that the maximal independent set of G
has size k, and algorithm A can be used to find an independent set of size at least k′.
Moreover,

1
α
≤ |E||V |(k′ + 1) + |E|
|E||V |(k + 1) + |E| =

1 + 1
|V | + k′

1 + 1
|V | + k

≤ 2 + k′

1 + k
,

hence k′ ≥ (k +1)/α− 2. In other words, we have an O(α)–approximation algorithm for
the Independent Set problem.
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It follows from Zuckerman [13], who recently improved a previous result from H̊astad [9],
that the Independent Set problem cannot have a polynomial time approximation al-
gorithm with worst case guarantee |V |1−ε for any ε > 0, unless P=NP. Since the number
of tariff arcs m in our transformation equals |V |, the first claim of the theorem follows.
Since the number of clients n in our transformation equals |V |+|E| ∈ O(|V |2), the second
claim follows.

Notice that this inapproximability result shows that, for the all-service RTP, we cannot
even expect a performance guarantee logarithmic in the total demand D, like the one we
obtained before. On the positive side, however, we can show the following.

THEOREM 7: There exists an n-approximation algorithm for the all-service river
tariff pricing problem.

PROOF: In an optimal solution, at least one client contributes to the total revenue
at least ΠRTP/n, and this contribution is achieved by utilizing a specific tariff arc at a
certain tariff. The proof now works by enumeration over all m·n possibilities for a client
using a specific arc. So assume that a tariff arc b and a client k are fixed. We claim that
we can compute the maximum tariff τ b on arc b, together with tariffs on all the other
arcs, such that client k indeed utilizes arc b and all other clients are served. Taking the
maximum over all m·n possibilities for a client using a specific arc, the revenue of this
solution is obviously at least ΠRTP/n.

The computation of this maximum tariff τ b on arc b, together with tariffs on all the
other arcs, such that client k indeed utilized arc b and all other clients are served, can
be achieved by binary search over the possible tariffs τ on arc b. Denote by cka the fixed
cost for client k when utilizing arc a, and recall that uk denotes the maximum total (per
unit) cost for client k. Given that client k utilizes arc b, the maximum tariff on arc b is
uk − ckb, which determines the interval for the binary search. Given some tariff τ on arc
b, in order to make sure that client k utilizes arc b, we just define the tariffs on all other
tariff arcs a as τa = τ + ckb − cka. It is straightforward to verify if this yields a feasible
solution with all clients served or not.
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