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Abstract

We consider the problem to price (digital) items in order to maximize the revenue obtainable from a set of bidders.
We suggest a natural monotonicity constraint on bundle prices, show that the problem remains NP-hard, and we
derive a PTAS. We also discuss a special case, the highway pricing problem.
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1. Introduction

We consider the situation where we want to sell a set of (digital) items to a set of bidders. Every bidder
places bids on subsets, or bundles of items, and each bidder would like to receive one or more of these
bundles (OR-bids). Bidders have valuations for each of the bundles they bid on. The valuation is the
maximum amount a bidder is willing to pay for a particular bundle. We assume that the bundles and the
valuations are known. Hence we are faced with a purely algorithmic problem, in contrast to mechanism
design problems where the valuations are private information to the bidders. We assume that each item is
available in unlimited supply, as for example for digital goods. We address a standard pricing regime often
addressed in the literature, namely each item needs to receive an anonymous price, and the price of any
bundle is the sum of its item prices. The optimization problem is to determine single item prices so as to
maximize the total revenue collected from all bidders. Notice that the problem is nontrivial only because
not all bids need to be granted in an optimal solution, as otherwise the problem reduces to solving a linear
program. Also notice that any solution will be trivially envy-free, meaning that a bidder not receiving a
particular bundle cannot afford it. This is an artifact of the unlimited supply of items.

In a sequence of recent papers [1,2,5,7,10,12,13], several algorithms and complexity results have been
derived for such price optimization problems. Many of the positive results achieve only logarithmic approxi-
mation guarantees, and often somewhat trivial algorithms suffice to achieve such bounds, e.g. uniform prices
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for all items. Demaine et al. [6] delivered a reason for this observation on the performance of algorithms,
showing that –in general– the problem does not allow for semi-logarithmic approximation algorithms. In this
paper, we introduce a very natural monotonicity constraint on bundle prices that allows us to derive results
that break this semi-logarithmic inapproximability barrier. More specifically, we impose the condition that
the price of any bundle of size k must not exceed the price of a bundle of size k+1 or larger, for any k. As we
will show, this condition implies that most of the items are comparable in the sense that their prices cannot
differ too much. Before we elaborate on related work and our contribution in more detail, let us define the
pricing settings more formally.

1.1. Model

Let I = {1, . . . ,m} denote the set of items for sale, and let J = {1, . . . , n} denote the set of bids placed
by all bidders. Each bid j ∈ J is on exactly one subset of items Ij ⊆ I. In line with notation in auction
literature, we call the set Ij also a bundle. Every bidder has a positive valuation for each of her bundles, that
is, every bundle Ij corresponding to bid j ∈ J has a positive valuation bj which is the maximum amount its
bidder is willing to pay for bundle Ij . We may assume without loss of generality that bj ≥ 1 for j ∈ J . By
pi we denote the price of item i, for i = 1, . . . ,m. The price of a bundle Ij is therefore

∑
i∈Ij

pi. A bid is
a winning bid if its bidder can afford it, and a losing bid otherwise. The set of winning bids is denoted by
W ⊆ J .
Definition 1 Given are n bids of the form (Ij , bj), j ∈ J . Each bid j has valuation bj and is placed on a
bundle Ij ⊆ I, where I is a set of m items of unlimited availability each. A solution consists of a price pi
for every item i ∈ I. Given item prices, let W ⊆ J denote all winning bids, so

∑
i∈Ij

pi ≤ bj for all j ∈ W
and

∑
i∈Ij

pi > bj for all j ∈ J \W . The objective is to maximize the total revenue
∑
j∈W

∑
i∈Ij

pi.
This problem is in general not approximable to within a (semi-)logarithmic factor in the number of

bids n [6]. We therefore introduce a monotonicity constraint on the set of feasible price vectors. More
specifically, we impose the following condition for any two subsets of items I ′ and I ′′.∑

i∈I′

pi ≤
∑
i∈I′′

pi whenever |I ′| < |I ′′| . (1)

The condition has a meaningful economic interpretation in settings where items are different, yet comparable.
It only requires that larger bundles are at least as expensive as smaller ones. Notice that we do not require
a monotonicity condition on bundles of the same size, as this would immediately yield that all items must
receive the same price. Yet, the condition is quite strong, as it requires that (most) item prices are of the
same order of magnitude; see Lemma 6. We show how this monotonicity constraint can be exploited to
derive results that break the inapproximability barrier known for the general case.

In the remainder of this paper, we denote by a ρ-approximation algorithm an algorithm that produces a
solution with value at least 1/ρ times the optimal solution value. A PTAS is a family of polynomial time
(1 + ε)-approximation algorithms, for any ε > 0.

1.2. Related work

Pricing problems with unlimited availability of items and single item pricing regime have recently received
quite some attention in the algorithmic literature [1,2,5–7,10–13]. As mentioned earlier, in general the max-
imum revenue is hard to approximate to within a semi-logarithmic factor in the number of bids n [6]. In
particular, it is therefore unlikely that a constant approximation algorithm exists. For the same problem,
Hartline and Koltun [13] present an approximation scheme with almost linear running time, given that the
number of distinct items m is constant. Moreover, given that each bidder is interested in bundles of at most
k items, Balcan and Blum [2] derive an O(k)-approximation. Finally, there exist two fully polynomial time
approximation schemes [2,5] for the problem where the bundles are a laminar family, that is, for any two
bundles Ij and Ik it holds that Ij ⊆ Ik, Ik ⊆ Ij or Ij ∩ Ik = ∅.
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Notice that an instance where bundles are a laminar family can always be interpreted as a problem with a
linear order on the items, and where the bundles consist of consecutive items in that linear order. The latter
problem, but now without the requirement that bundles are a laminar family, is known as the “highway
problem” [12]. Even this seemingly innocent problem is NP-complete [5]. The highway problem is motivated
by the problem to determine tolls to be charged for usage of parts of a highway. For that problem, there
exists an O(logm)-approximation [2], and given that the largest valuation is bounded by a constant, also
an exact dynamic programming algorithm [12].

1.3. Our results

We show in Section 2 that the revenue maximization problem of Definition 1 is strongly NP-hard even
with the monotonicity constraint on bundle prices as defined in (1). Moreover, we derive a polynomial time
approximation scheme (PTAS) for that problem, with a time complexity of O(nm8/ε(logB))8/ε), where
B = maxj bj . The PTAS crucially exploits the fact that the monotonicity condition (1) yields most item
prices to be of the same order of magnitude.

As a special case we also address the “highway problem” as suggested in [12] in Section 3. We show
that also this problem remains weakly NP-hard under the monotonicity condition, and we derive a simple
O(logB)-approximation algorithm, where B = maxj∈J bj .

2. Arbitrary Bundles

We settle the computational complexity of the pricing problem with monotonicity constraint by first
showing strong NP-hardness, and then deriving a PTAS.

2.1. Complexity

We show that the pricing problem with monotonicity constraint is strongly NP-hard by using a reduction
from the strongly NP-hard problem IndependetSet [8]. Let G = (V,E) be a graph in which we want to
find a maximum cardinality set of vertices that are pairwise non-adjacent. We define an instance I of the
pricing problem as follows. Let M be an integer that is large enough. For every vertex v ∈ V we create a
vertex-item, and for every edge e ∈ E we introduce an edge-item, that is, I = V ∪ E. For every item i ∈ I,
there are M + 2 bids placed on the bundle consisting of only this item. One of these bids has valuation M ,
and the others have the same valuation M + 1. Moreover, for every edge e = {u, v} ∈ E, there are four more
bids. One bid is on bundle {u, e}, one bid on bundle {v, e}, and two bids are on bundle {u, v}. These four
bids each have valuation 2M+1 each. Here, M is an integer large enough, for example, M ≥ 2|E|2 +4|E|+2
suffices.

In the NP-hardness proof (Theorem 5) we need the property that in an optimal solution to the above
created instance I of the pricing problem all prices are either M or M + 1. Therefore, we first collect some
preliminary observations.
Lemma 2 In the optimal solution to the pricing problem on I, all prices are within the interval [M,M+1].

PROOF. Assume the claim is not true, and let p be an optimal solution that violates it. If all items have
prices pi ≤ M + 1 and there exists at least one item with price pi < M , then it can easily be verified that
the price vector p′, defined by p′i = max{pi,M}, yields the same set of winning bids and the revenue has
increased compared to p. Hence, p cannot be optimal.

Therefore, assume that at least one item, h, has a price ph > M + 1 and consider the price vector p′

defined by p′i = pi for i 6= h and p′h = M + 1. As item h belongs to at most 3|E| bundles requesting two
items, the decrease in revenue of the two item-bundles due to the price change is at most 3|E|M . On the
other hand, M + 1 bidders can now afford their bundle requesting item h. Therefore, the increase in revenue
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due to these bidders is M2 + 2M + 1. Thus, the total revenue increases by at least M2 + (2− 3|E|)M + 1
which is positive since M > 2|E|2. Hence, the price vector p cannot be optimal. 2

Lemma 3 In an optimal solution to the pricing problem on I, all bids on two-item bundles are winning
bids.

PROOF. Suppose that there exists a two-item bundle, say Ij = {i1, i2}, that is priced higher than 2M + 1
and let the prices of the two items be pi1 = M + d1 and pi2 = M + d2. By the previous lemma, we know
that 0 < d1, d2 ≤ 1. As each item is in at most 3|E| two-item bundles, decreasing the price of item i1 to M
increases the total revenue by at least −((M + 1) + (3|E| − 1))d1 + M + 2M + d2 ≥ 2M − 3|E|, which is
positive since M > 3|E|/2. 2

Lemma 4 In an optimal solution to the pricing problem on I, all prices are integral.

PROOF. By Lemma 2 we know that each item has a price pi = M +di, for 0 ≤ di ≤ 1. Suppose that there
exists an item i with 0 < di < 1 and that this item corresponds to an edge e = {u, v}. If both du = dv = 0,
then we can change the price of the edge item e to p′e = M + 1 without affecting the set of winning bids and
increasing the total revenue. Therefore, assume that du > 0 and that du ≥ dv. By Lemma 3, we know that
du + dv ≤ 1 and thus dv ≤ 1/2. Consider the prices p′ defined by p′e = M + 1, p′u = p′v = M , and p′i = pi for
all other items i. The increase in revenue due to this price change for the two-item bundles corresponding to
the edge e = {u, v} is 1− (du + de) + 1− (dv + de)− 2(du + dv), whereas the total decrease in revenue for all
other two-item bundles is bounded by 3(|E|−1)(du+dv). The increase in revenue caused by the single item
bundles e and u is (1 − de)(M + 1) + M − du(M + 1), whereas the increase in revenue for the single item
bundles on v is M−(M+1)dv ≥ 0 if dv > 0 and 0 otherwise. Hence, the total increase in revenue due to this
price change is 1−(du+de)+1−(dv+de)−2(du+dv)−3(|E|−1)(du+dv)+(1−de)(M+1)+M−du(M+1) ≥
M − (3|E| − 1)(du + dv) + (1− de− du)(M + 1) ≥M − (3|E| − 1) ≥ 0, as M > 3|E| − 1. Hence, any solution
in which an edge item e has a fractional price cannot be optimal.

On the other hand, suppose that all edge items e ∈ E have price pe ∈ {M,M + 1} and there exists a
vertex item u with M < pu < M + 1. Then by Lemma 3 we know that there exists an item u such that
all its neighbors v with {u, v} ∈ E have price pv ≤ M + 1/2. Moreover, we may assume that there exists a
neighbor v such that pv > M as otherwise we may set pu = M + 1 without affecting the set of winning bids,
but increasing the total revenue. Let d = max{dv : {u, v} ∈ E}, then 0 < d ≤ 1/2. Consider the prices
p′ defined by p′u = M + 1, p′v = M for v such that {u, v} ∈ E and p′i = pi for all other items i. Then the
revenue for each two-item bundle is decreased by at most 2d and as there are in total 4|E| two-item bundles
the total decrease in revenue due to this price change is bounded by 4|E|(2d) ≤ 4|E|. As there was at least
one neighbor of u that had a price pv > M , the change in price leads to an increase of revenue of at least
(1− du)(M + 1) +M − d(M + 1) ≥ (1− du − d)(M + 1) +M ≥M , as by Lemma 3 du + d ≤ 1. Hence the
total increase in revenue due to this price change is at least M − 4|E| > 0, as M > 4|E|. Hence, no solution
with at least one fractional price can be optimal. 2

Theorem 5 The revenue maximization problem is strongly NP-hard, even if the prices need to satisfy the
monotonicity constraint.

PROOF. Consider instance I. We claim that there exists an independent set of size s in G if and only
if there is a solution to the revenue maximization problem with revenue at least f(s) := (M2 + 2M)|V | +
(M2 + 10M + 3)|E|+ s.

Given an IndependetSet V ′ ⊆ V with |V ′| = s. Let E0 = {e = {u, v} ∈ E : u, v /∈ V ′}. Let pv = M + 1
if v ∈ V ′ and M otherwise. Let pe = M + 1 if e ∈ E0 and M otherwise. The revenue of this solution
is π = (M + 1)(M |V | + |V ′| + M |E| + |E0|) + M |V \ V ′| + M |E \ E0| + 8M |E| + 2|E0| + 3|E \ E0| =
(M2 + 2M)|V |+ (M2 + 10M + 3)|E|+ |V ′| = f(s).
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For the converse, assume there is an optimal solution of the pricing problem with revenue at least f(s).
We know by Lemmas 2 and 4, that the price for any item is either M or M + 1. Let V ′ = {v ∈ V :
pv = M + 1}, then V ′ is an independent set in G, as by Lemma 3 we know that for any e = {u, v} ∈ E
with u ∈ V ′, pv ≤ M . Define E0 = {e = {u, v} ∈ E : pe = M + 1}. Then for any e = {u, v} ∈ E0, we
have that pu = pv ≤ M by Lemma 3. As the revenue for the four two-item bundles corresponding to an
edge e ∈ E \ E0 is bounded by 3(2M + 1) + 2M = 8M + 3 the total revenue is bounded from above by
|V ′|(M + 1)2 + |V \ V ′|(M2 + 2M) + |E0|(M + 1)2 + |E \E0|(M2 + 2M) + |E0|(2(2M + 1) + 2(2M)) + |E \
E0|(8M +3) = (M2 +2M)|V |+ |V ′|+(M2 +10M +3)|E|. As the total revenue is at least f(s), we conclude
that |V ′| ≥ s, which finishes the proof. 2

2.2. Approximation scheme

Assume, without loss of generality, that p1 ≤ p2 ≤ . . . ≤ pm, then by the monotonicity constraint, we
know 2p2 ≥ p1 + p2 ≥ pm. Similarly, 3p3 ≥ p1 + p2 + p3 ≥ pm−1 + pm ≥ 2pm−1, etc.
Lemma 6 Suppose p1 ≤ p2 ≤ . . . ≤ pm. Any pricing of the items satisfying the monotonicity constraint
also satisfies

k pk ≥ (k − 1)pm−k+2, k = 2, . . . ,
⌈m

2

⌉
. (2)

The idea for the PTAS is now the following. First, we restrict the prices to powers of (1 + δ) for some
δ > 0. Then, Lemma 6 says that except for a constant number of the cheapest and most expensive items,
all items have prices in roughly the same range. Therefore we can price all except a constant number of
items uniformly with the same price, without loosing too much in terms of the total revenue. We therefore
enumerate over all possible uniform prices for the bulk of the items, and over all possible combinations of
prices for the remaining (constant number of) items.
Theorem 7 The pricing problem with monotonicity constraint admits a PTAS. The time complexity is
O(nm8/ε(logB)8/ε), where ε is the precision of the PTAS and B = maxj bj.

PROOF. Given an instance of the pricing problem and an ε > 0, let δ = ε/4, and for convenience assume
that 1/δ is integral. Let p1 ≤ · · · ≤ pm be the prices in an optimal solution, satisfying the monotonicity
constraints. Define the subsets of items S = {i ∈ I : i ≤ 1

δ }, M = {i ∈ I : 1 + 1
δ ≤ i ≤ m + 1 − 1

δ } and
L = {i ∈ I : i ≥ m + 2 − 1

δ }. Note that M = ∅ if ε ≤ 8/(m + 1), in which case the number of items is in
O(1/ε). We round down the prices of all items in S and L to powers of (1 + δ). Moreover, we price all items
in M uniformly at price p1+1/δ, rounded down to a power of (1 + δ). Let us call the new prices p′, and let us
call p′M the price of items in M . First observe that the order of prices does not change. We next argue that
we do not loose too much by this rounding. Clearly, since we only round down, the set of winning bids can
only increase. Moreover, we loose at most a factor (1 + δ) on items in S and L. Finally, consider the items
in M . By (2), we have(

1 +
1
δ

)
p1+1/δ ≥ 1

δ
pm+1−1/δ .

In other words, the price for the most expensive item in M differs from the cheapest item in M by a factor
at most (1 + δ). Hence, on items in M we loose a factor at most (1 + δ)2.

Now we have a structured solution, but it may violate the monotonicity constraint. In case of a violation,
we divide the highest prices by a factor of (1 + δ), so that the new price vector satisfies the monotonicity
constraint. Note that in this case, we loose at most a factor of (1 + δ)3 compared to the optimal pricing
vector. The question remains which prices need to be divided by (1+δ). To this end, we define s = max{0, i :
p′i < p′M} as the number of small prices and ` = max{0, i : p′m+1−i > p′M} as the number of high prices. If
s > `, then the new prices are defined by p′′i = p′i for 1 ≤ i ≤ s and for s + 1 ≤ i ≤ m by p′′i = p′i/(1 + δ).
Otherwise, if s ≤ `, then the new prices are defined by p′′i = p′i for 1 ≤ i ≤ m−` and for m−`+1 ≤ i ≤ m by
p′′i = p′i/(1+δ). Let k = max{s−1, `}. Then, if there is a violation of the monotonicity constraint in the new
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pricing, sets {1, . . . , k + 1} and {m+ 1− k, . . . ,m} are the two most violating sets, as p′′k+2 = p′′m−k = p′M .
Therefore, we only need to verify that for these two sets the monotonicity constraint holds true. First notice
that by the way of defining k and the prices p′′, we have that p′′i = p′i for 1 ≤ i ≤ k+ 1 and p′′i = p′i/(1 + δ),
for m+ 1− k ≤ i ≤ m. Hence, we have that

k+1∑
i=1

p′′i =
k+1∑
i=1

p′i ≥
k+1∑
i=1

pi
1 + δ

≥
m∑

i=m+1−k

pi
1 + δ

≥
m∑

i=m+1−k

p′i
1 + δ

=
m∑

i=m+1−k

p′′i ,

where the second inequality is due to the monotonicity of the original set of prices p. From this it follows
that the structured solution p′′ satisfies the monotonicity constraint.

The PTAS now consists of enumerating all possible structured solutions, which is sufficient to obtain a
feasible solution that differs from the optimal solution by a factor at most (1 + δ)3 < (1 + ε). There are(

m
−1+2/δ

)
possible choices for S ∪ L. Since all prices are powers of (1 + δ), there are logB possible prices.

Given that all items in M have the same price, there are at most (logB)2/δ structured solutions for each
choice of S ∪ L. Computation of the revenue for any such solution takes O(nm) time. This together with
δ = ε/4 yields the claimed time complexity, where the constant hidden in the O-notation depends on ε. 2

3. Special case: The highway problem

A particularly intriguing special case of the general pricing problem considered so far is the “highway
problem” as introduced by Guruswami et al. [12]. Here, the items are edges of a simple path, and the
bundles corresponding to bids requested by bidders are subpaths. The problem is known to be weakly
NP-hard [5], and a log(m)-approximation exists [2]. Recently, also a quasi-PTAS [7] has been derived. The
existence of a constant-factor approximation algorithm, however, is still open.

In this setting, it is most natural to assume that the monotonicity constraint holds for any two subpaths
only, but not necessarily for arbitrary subsets of items. Hence, the strong NP-hardness result and the PTAS
for the revenue maximization problem with monotonicity constraint, established in the previous section,
do not carry over to the highway problem with price monotonicity on subpaths. Also notice that the weak
NP-hardness for the general highway problem from [5] does not automatically yield weak NP-hardness for
the problem with price monotonicity as optimal prices in that completeness proof are not monotone in the
length of the subpaths. We next derive weak NP-hardness for the problem with monotonicity constraint,
and we present a simple O(logB)-approximation algorithm, where B = maxj∈J bj .

3.1. Complexity

We prove NP-completeness of the highway problem with monotonicity constraint by a reduction from
EqualCardinalitySubsetSum: Given a set of positive integers a1, a2, . . . , a2L and nonnegative integer
A, does there exist a set S ⊆ {1, . . . , 2L} such that

∑
`∈S a` = A and |S| = L? This problem is readily

shown NP-complete by a simple reduction from SubsetSum (see [8]).
Consider an instance of EqualCardinalitySubsetSum with 0 ≤ a1 ≤ a2 ≤ . . . ≤ a2L and assume that

a2L >
∑2L−1
`=1 a` and 0 < A < a2L. These assumptions do not harm the NP-completeness of the problem, as

we can always add two large items a2L+1 =
∑2L
`=1 a` and a2L+2 = 2

∑2L
`=1 a`+1 and set A′ = A+a2L+1. Then

a subset S in the instance of EqualCardinalitySubsetSum exists if and only if
∑
`∈S a`+a2L+1 = A′. We

now create an instanceH of the highway problem as follows. For every ` = 1, . . . , 2L, we define a′` := a`+a2L,
and we introduce a gadget. Every gadget ` consists of four items i`,1, i`,2, i`,3, i`,4. Furthermore, there are
4+8L bids in every gadget `, one bid is on bundle {i`,1} with valuation 2M− 1

2a
′
`, one bid is on bundle {i`,2}

with valuation a′`, 8L bids are on bundle {i`,2, i`,3} with valuation 2M + ( 1
2 + 1

8L )a′`, one bid is on bundle
{i`,3} with valuation 2M − 1

2a
′
`, and one bid is on bundle {i`,4} with valuation M , where M is a sufficiently

large integer. For gadget 2L, there is one additional bid on bundle {i2L,1, i2L,2, i2L,3, i2L,4} with valuation
5M . Finally, there is one big bid on all items with valuation 10ML+ 1

8a2L + 1
8LA. Thus, the instance of the

highway pricing problem has 2L(4 + 8L) + 2 bids and 8L items, see Figure 1.
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2M − 1
2
a′!

a′!

2M +
(

1
2

+ 1
8L

)
a′!

2M − 1
2
a′!

M

Gadget 1

10ML + 1
8
a2L + 1

8L
A

i1,1 i1,2 i1,3 i1,4

Gadget 2

i2,1 i2,2 i2,3 i2,4

Gadget 2L− 1

i2L−1,1i2L−1,2 i2L−1,3i2L−1,4

8L

Gadget 2L

i2L,1 i2L,2 i2L,3 i2L,4

5M

Fig. 1. Instance H of the highway problem.

To prove NP-hardness, we claim that there exists a set S ⊆ {1, . . . , 2L} such that
∑
`∈S a` = A and |S| = L

if and only if there is a feasible solution for the highway problem, fulfilling the monotonicity constraint, and
with a total revenue π ≥ (20 + 32L)ML + 5M + 4L

∑2L
`=1 a` + (8L2 + 1

8 )a2L + 1
8LA. In the NP-hardness

proof of Theorem 10 below, we use for every gadget only one out of two following price vectors.

p1
` =

(
2M − 1

2
a′`, a

′
`, 2M −

1
2
a′`,M

)
p2
` =

(
2M − 1

2
a′`, (1 +

1
8L

)a′`, 2M −
1
2
a′`,M

)
.

(3)

Proposition 8 Suppose that there exists a solution to H with revenue at least (20 + 32L)ML + 5M +
4L
∑2L
`=1 a` + (8L2 + 1

8 )a2L + 1
8LA. Then, the items in gadget ` are priced according to either price vector

p1
` or p2

` .

PROOF. Let us denote the total revenue by π = πbig +
∑2L
`=1 π`, where πbig is the revenue obtained from

the big bid and π` is the revenue obtained from the items in gadget `.
Consider a gadget 1 ≤ ` < 2L. If p`,2 + p`,3 > 2M + 1

2a
′
`, then at most one of the bids on {i`,2} or

{i`,3} belongs to the set of winning bids. In this case, we can bound the revenue on gadget ` from above
by π` ≤ 2M − 1

2a
′
` + 2M − 1

2a
′
` + 8L(2M + ( 1

2 + 1
8L )a′`) + M = 5M + (16M + 4a′`)L. On the other hand,

if the bid on {i`,2} and the one on {i`,3} are both winning bids, then each of the bids on {i`,2, i`,3} cannot
contribute more than 2M + 1

2a
′
` to the revenue. Therefore, also in this case the revenue due to the items in

this gadget can be bounded by π` ≤ 5M + (16M + 4a′`)L.
With similar arguments, we can bound the revenue on gadget 2L by π2L ≤ 10M + (16M + 4a′`)L, and the

big bid contributes at most 10ML + (1/8)a2L + (1/8L)A. Hence, the total revenue π = πbig +
∑2L
`=1 π` ≤

10ML+ 1
8a2L+ 1

8LA+
∑2L
`=1(5M+(16M+4a′`)L)+5M ≤ (20+32L)ML+5M+4L

∑2L
`=1 a`+(8L2+ 1

8 )a2L+
1

8LA. Therefore, to have a revenue of at least (20 + 32L)ML+ 5M + 4L
∑2L
`=1 a` + (8L2 + 1

8 )a2L + 1
8LA, the

revenues on each of the gadgets and the big bid need to be equal to the before mentioned upper bounds. It
is easy to verify that only the price vectors p1

` and p2
` satisfy this constraint. 2

In the NP-hardness proof of Theorem 10 below, we use only the price vectors p1
` and p2

` defined in (3). We
first show that these price vectors always lead to a pricing strategy that satisfies the monotonicity constraint.
Lemma 9 Any pricing strategy that only uses price vectors p1

` and p2
` for each gadget satisfies the mono-

tonicity constraint.

PROOF. Assume that 0 ≤ a1 ≤ a2 ≤ . . . ≤ a2L. Notice that both p1
` and p2

` consist of 4 item prices, and
the sum of the item prices in p1

` is 5M and in p2
` it is 5M + 1

8La
′
`. Now consider an arbitrary bundle of size

K, where K ≤ n = 8L. Since only prices p1
` and p2

` are used for the gadgets, depending on the value of K

7



mod 4, we can easily determine lower and upper bounds on the price of any bundle of size K. This is a
tedious yet straightforward case analysis, and we give the resulting lower and upper bounds in Table 1.

Table 1

Smallest and largest bundle prices for bundles with size K.

K ≡ 0 mod 4 LB = 5M K
4

+ 1
2
a′
1 − 1

2
a′
2L UB = 5M K

4
− 1

2
a′
1 + ( 1

2
+ K

4
· 1

8L
)a′

2L

K ≡ 1 mod 4 LB = 5MbK
4
c+ a′

1 UB = 5MbK
4
c+ 2M − 1

2
a′
1 + bK

4
c · 1

8L
a′
2L

K ≡ 2 mod 4 LB = 5MbK
4
c+ 2M + 1

2
a′
1 UB = 5MbK

4
c+ 3M − 1

2
a′
1 + bK

4
c · 1

8L
a′
2L

K ≡ 3 mod 4 LB = 5MbK
4
c+ 3M + 1

2
a′
1 UB = 5MbK

4
c+ 5M − a′

1 + bK
4
c · 1

8L
a′
2L

One can now calculate the difference between the lower bound of a bundle of size K + 1 and the upper
bound on a bundle of size K, LB(K + 1)− UB(K). Recalling that K ≤ 8L and a′` = a` + a2L, one verifies
that this difference is positive in all four cases, hence the monotonicity constraint is satisfied. 2

Theorem 10 The highway problem with monotonicity constraint is NP-hard.

PROOF. We show that there exists a set S ⊆ {1, . . . , 2L} such that
∑
`∈S a` = A and |S| = L if and

only if there is a feasible solution for the highway problem, fulfilling the monotonicity constraint, and with
a total revenue π ≥ (20 + 32L)ML+ 5M + 4L

∑2L
`=1 a` + (8L2 + 1

8 )a2L + 1
8LA. Given a set S ⊆ {1, . . . , 2L}

such that
∑
`∈S a` = A and |S| = L. Let the price vector of gadget ` be p1

` if ` /∈ S, and p2
` if ` ∈ S. The

revenue of every gadget ` is (5 + 16L)M + 4L(a` + a2L), independent of which price vector is used, and
there is an additional revenue in gadget 2L of 5M . Given the pricing strategy for all items, the big bid
contributes

∑
`∈S

(
5M + 1

8L (a` + a2L)
)

+
∑
`/∈S(5M) = 10LM + 1

8a2L + 1
8LA. This yields a total revenue of

(20 + 32L)ML+ 5M + 4L
∑2L
`=1 a` + (8L2 + 1

8 )a2L + 1
8LA.

For the converse, assume there is a feasible solution to the highway pricing problem with a total revenue
of at least (20 + 32L)ML+ 5M + 4L

∑2L
`=1 a` + (8L2 + 1

8 )a2L + 1
8LA. By Proposition 8, we know that we use

either p1
` or p2

` as defined in (3) for each gadget `. Notice that to obtain the maximum revenue on gadget 2L,
we use pricing p1

2L. Let set S = {` : p` = p2
`}. Then, the actual payment of the big bid can also be written

as
∑
`∈S

(
5M + 1

8L (a` + a2L)
)

+
∑
`/∈S (5M) = 10ML+ 1

8L |S|a2L + 1
8L

∑
`∈S a`. From the arguments in the

proof of Proposition 8, we know that this should be equal to its valuation 10ML + 1
8a2L + 1

8LA. That is,∑
`∈S a` = (L−|S|)a2L+A. We claim that |S| = L. To prove this, suppose it is not true. First, assume that

|S| < L, then
∑
`∈S a` = (L−|S|)a2L+A >

∑2L−1
`=1 a`+A, which is not possible as 2L /∈ S, so |S| ≥ L. Now,

assume |S| > L, then
∑
`∈S a` = (L− |S|)a2L +A < −a2L +A < 0, as A < a2L. This is also not possible as

all integers a` are nonnegative. Therefore, we can conclude that |S| = L and consequently, A =
∑
`∈S a`. 2

3.2. Approximation algorithm

Notice that we cannot apply the PTAS from Theorem 7 to the highway problem, as this crucially re-
quires the monotonicity constraint for arbitrary subsets of items. Nevertheless, we derive an O(logB)-
approximation algorithm for the highway pricing problem with monotonicity constraint, where B = maxj bj .
To this end, we present approximation guarantees for two special cases first.
Lemma 11 The highway pricing problem with monotonicity constraint in which all bundles have size at
least two is approximable within a factor of 3 by optimal uniform pricing.

PROOF. Consider an optimal solution with revenue opt and let p∗max be the highest item price in this
solution. We claim that pricing all items at p∗max/3, yields a revenue of at least opt/3. Clearly, an optimal
uniform pricing is at least as good as the uniform p∗max/3 pricing.

First, we show that any winning bid j ∈W in the optimal pricing remains a winning bid for the uniform
pricing at level p∗max/3. Let |Ij | = `. Then the valuation for bid j is at least bj ≥ b`/2cp∗max, as by the
monotonicity constraint the total price of any two consecutive items in an optimal solution is at least p∗max

8



and the bidder who places bid j can afford the corresponding bundle Ij . In the uniform p∗max/3 pricing,
the total bundle price is `p∗max/3, which is at most b`/2cp∗max, for ` ≥ 2. In an optimal pricing, bundle Ij
corresponding to bid j is priced at most at `p∗max, whereas in our uniform pricing, we get `p∗max/3. Hence,
pricing all items p∗max/3 yields a revenue of at least opt/3. 2

The above lemma shows that whenever all bundles contain at least two items, we have a constant ap-
proximation. Now, we consider only instances in which bundles consist of exactly one item. Moreover, we
restrict ourselves to instances in which bj/bk ≤ 2, for any two bids j and k.
Lemma 12 The highway pricing problem with monotonicity constraint, restricted to instances in which
each bid is on a bundle with exactly one item and bj/bk ≤ 2 for any two bids j, k, admits a linear time
2-approximation algorithm

PROOF. We price each item uniformly at p = minj bj . Since for any two bids j, k, it holds that bj/bk ≤ 2,
and every bid is on a bundle with one item, we loose at most a factor of 2 for every bid. Hence, pricing all
items at p yields a revenue of at least opt/2. 2

Theorem 13 The best uniform pricing yields a solution with revenue at least opt/(3 + 2 log2B) for the
highway problem with monotonicity constraint, where B = maxj bj. Moreover, the time needed to find this
solution is O(n2m).

PROOF. Consider an optimum solution satisfying the monotonicity constraint, and let optL denote the
revenue of bidders whose bids are on bundles of size at least two and let optr denote the revenue of bidders
whose bids are on bundles of size one with valuation 2r−1 ≤ bj < 2r (r = 1, . . . , dlog2Be+1) in this solution.
Then opt = optL +

∑
r optr.

Moreover, let appL denote the revenue obtained by the best uniform pricing and appr denote the revenue
obtained by the best uniform pricing strategy for the bidders with bids in Jr = {j ∈ J : |Ij | = 1 and 2r−1 ≤
bj < 2r }. By Property 12, we have that appr ≥ optr/2 and thus maxr appr ≥

∑
r optr/(2 log2B).

Moreover, from Lemma 11, it follows that appL ≥ optL/3. Hence, the solution found yields a revenue of
max{appL,appr : r = 1, . . . , dlog2Be+ 1} ≥ opt/(3 + 2 log2B).

To see the claim on the time complexity, note that to find an optimal uniform pricing, we need to consider
at most O(n) different prices, namely bj/|Ij | for all j ∈ J . For each price, we need to compute the set of
winning bids and the revenue obtained on this price, which can be done in O(nm) time. So, the best uniform
price can be computed in O(n2m) time. 2

4. Conclusion

This paper studies purely algorithmic, or omniscient pricing problems, reflected by the fact that we as-
sume bidders’ valuations bj to be known. Even more challenging are problems where valuations are private
information, and incentive-compatible (truthful) mechanisms are sought, that is, mechanisms that induce
bidders to truthfully report their valuations. To that end, we refer to Goldberg et al. [9] or Balcan et al. [3],
and note that Balcan et al. [4], extending corresponding results by Guruswami et al. [12], present a truthful
mechanism with performance guarantee O(log n + logm) for single item pricing in general combinatorial
auctions with unlimited supply, hence particularly for the model considered in this paper. Again, the under-
lying pricing mechanism is very simple; it consists of randomly choosing a uniform price for all items. Thus,
extending the approximation algorithms of this paper to truthful mechanisms is an interesting problem for
future research.
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