
Games and Mechanism Design in Machine Scheduling -

An Introduction

Birgit Heydenreich∗ Rudolf Müller Marc Uetz

Maastricht University, Quantitative Economics,

P.O. Box 616, 6200 MD Maastricht, The Netherlands.

E-mail: {b.heydenreich,r.muller,m.uetz}@ke.unimaas.nl

Abstract

In this paper, we survey different models, techniques, and some recent results to tackle ma-
chine scheduling problems within a distributed setting. In traditional optimization, a central
authority is asked to solve a (computationally hard) optimization problem. In contrast, in
distributed settings there are several agents, possibly equipped with private information that
is not publicly known, and these agents need to interact in order to derive a solution to the
problem. Usually the agents have their individual preferences, which induces them to behave
strategically in order to manipulate the resulting solution. Nevertheless, one is often interested
in the global performance of such systems. The analysis of such distributed settings requires
techniques from classical Optimization, Game Theory, and Economic Theory. The paper there-
fore briefly introduces the most important of the underlying concepts, and gives a selection of
typical research questions and recent results, focussing on applications to machine scheduling
problems. This includes the study of the so-called price of anarchy for settings where the agents
do not possess private information, as well as the design and analysis of (truthful) mechanisms
in settings where the agents do possess private information.

Keywords: Machine Scheduling, Game Theory, Mechanism Design

1 Introduction and Scope

Consider a problem where we are asked to distribute a stream of jobs over several production
facilities that are available to process those jobs. In traditional optimization, a central decision
maker would be equipped with all relevant data of that problem, asked to derive a solution that
fulfills all the necessary side constraints, and optimizing some kind of global performance criterion.
However, assuming that decisions are taken by several independent economic units, it might be the
case that these individual units aim at optimizing their own objectives rather than the performance
of the system as a whole. Such situations call for models and techniques that take the strategic
behavior of individual units into account, and simultaneously keep an eye on the global performance
of the system.

Strategic situations are traditionally analyzed in Game Theory as well as certain areas of Eco-
nomic Theory. The game theoretic viewpoint was lately also adopted in the Computer Science

∗Supported by NWO grant 2004/03545/MaGW ‘Local Decisions in Decentralised Planning Environments’.

and Operations Research communities, motivated by an increasing amount of economic activity
that takes place via the internet, such as electronic auctions. In recent years, this resulted in both
a (re-)discovery of several classic results from Game Theory and Economic Theory, as well as an
amazing wealth of new results in a quickly developing field that combines techniques from classical
Optimization, Game Theory, and Economic Theory.

In this paper, we give an—admittedly subjective—introduction into typical research questions
that have recently been addressed in the literature. From the application perspective, we focus
on specific problems from Production and Operations Management, namely simple and classical
scheduling and sequencing problems. In that perspective, the focus is not so much on actual
applications in practice, but rather on the underlying game theoretic models and methodologies. We
are aware that this focus is quite narrow, yet it serves well to exemplify the most important research
questions that arise when addressing optimization problems from a decentralized perspective. In
particular, by keeping the focus narrow from the applications point of view, we think that we are
able to better highlight the most important underlying theoretical challenges.

In decentralized settings, central coordination of a system is partially replaced by decisions and
actions taken by agents. Those agents are assumed to act rationally on behalf of their own interest,
and it is generally assumed that their selfish behavior results in a situation that can be characterized
by some sort of system equilibrium. From a global perspective, such an equilibrium may of course
lead to suboptimal system performance. The following two issues arise in such settings and will be
addressed in this paper.

• Given a fixed decentralized setting in which agents selfishly act on behalf of their own inter-
est, try to characterize and analyze the quality of the resulting system equilibria from the
perspective of the overall system performance.

• Try to design the decentralized setting in such a way that selfish agents are induced to behavior
that results in system equilibria that nevertheless exhibit a good overall system performance.

Moreover, both issues can be studied in settings where the individual agents do or do not have
private information. The distinction between settings with or without private information leads
to different challenges and related research questions. In fact, the paper is structured along this
distinction.

In settings without private information, also called complete information settings, the wealth of
the literature is of a descriptive nature and addresses the issue to characterize and analyze equilibria
of given systems. Only to a lesser extent the actual design of such settings is addressed. The analysis
of system equilibria leads to the definition of the so-called price of anarchy or coordination ratio:
Caused by selfish behavior of agents, by how much does the overall system performance deteriorate
due to a lack of central coordination? In the literature on the price of anarchy, it is generally
assumed that all data that describes the problem is publicly known. The ‘only’ complication is
caused by the fact that agents act on their own behalf. The agents thus need to take into account the
(strategic) behavior of other agents. The underlying equilibrium concept is the Nash equilibrium.
Settings without private information and the analysis of the price of anarchy will be addressed in
Section 3. The models and results discussed in Section 3 are mainly from the work of Koutsoupias
and Papadimitriou (1999), Czumaj and Vöcking (2002), and Immorlica, Li, Mirrokni, and Schulz
(2005). When it comes to the design of complete information settings, one is concerned with
defining the rules within which the agents may interact. In this paper, we give several examples of
system designs for machine scheduling problems, and discuss the resulting price of anarchy.

In order to improve the quality of resulting equilibria in complete information settings, one
can augment the system by introducing payments. In the context of a network routing problem,

2

the issues that might arise with introducing payments have been addressed, for example, by Cole,
Dodis, and Roughgarden (2006). Another option to improve the quality of system equilibria is to
centrally control a certain fraction of the agents, leading to so-called Stackelberg games. Such a
model was analyzed for example by Roughgarden (2004) in the context of scheduling. We refer to
those papers for an introduction into these and related issues. In this paper, we will not further
elaborate on such extensions of complete information settings.

In settings with private information, we immediately arrive at a research field that is also known
as algorithmic mechanism design; a term that was coined by Nisan and Ronen (2000). In these
settings, the additional complication is that the agents own some piece of private information that
is not publicly known. In order to be able to run and evaluate the system, the agents need to reveal
this private information to the system. Hence, in addition to their (strategic) behavior within the
system itself, agents might be tempted to falsely report their private information if it is beneficial
for their own objectives. One important part of the design of such systems is therefore to induce the
agents to truthfully report their private information; sometimes also called the design of truthful
mechanisms. Notice that the equilibria concepts in models with private information are more
complex, because each agent is faced with the additional uncertainty about the private information
of the other agents. Algorithmic mechanism design problems are addressed in Section 4. The
specific models and results discussed in Section 4 are based on the work of Archer and Tardos
(2001), Nisan and Ronen (2000), Porter (2004), and Heydenreich, Müller, and Uetz (2006).

As mentioned before, the scope of this paper is not to give an exhaustive overview of the
field, but to highlight some typical research questions. Hence, we have chosen to discuss only
a subjective selection of recent papers. Other references from Computer Science not explicitly
discussed here are, for example, Christodoulou, Koutsoupias, and Nanavati (2004) and Angel,
Bampis, and Pascual (2005). Related problems are also studied in the literature on Economic
Theory, addressing questions on the efficient organization of queues. There are, for example, papers
on the existence of mechanisms with more properties than only truthfulness (Mitra 2001, 2005), or
where queue disciplines are organized with the help of auctions (Kittsteiner and Moldovanu 2005).

The paper is structured as follows. In Section 2.1, we introduce basic notation and terminology
for the scheduling models that will be addressed. In Section 2.2 we give a survey of the most basic
concepts and terminology in game theory and mechanism design that will be used throughout the
paper. Section 3 then addresses the analysis of the price of anarchy in settings without private
information, and Section 4 addresses the design and analysis of (truthful) mechanisms in different
settings with private information.

2 Basic Concepts and Notation

2.1 Basic Scheduling Models

We consider machine scheduling problems with the following characteristics. There is a set of
jobs J = {1, . . . , n}, and each job has to be scheduled on any machine out of a set of machines
M = {1, . . . ,m}. Unless explicitly stated otherwise, jobs must be scheduled non-preemptively,
meaning that once the processing of a job has started, it cannot be interrupted until the job is
completed. Regarding the machines we distinguish between three different models:

• In parallel machine scheduling, each job j ∈ J has processing time pj > 0, independent of the
machine that processes the job.

• In related (or uniform) machine scheduling, each job j has processing time pj (on a unit
speed machine), each machine i ∈ M has a speed si > 0, and the processing time of job j on

3

machine i equals pj/si.

• In unrelated machine scheduling, each job j ∈ J has processing time pij > 0 when scheduled
on machine i ∈ M .

In addition, jobs may have different characteristics depending on the specific model that is
addressed. We only mention the two most important characteristics here. A release date rj ≥ 0
of job j is the time when job j comes into existence or is released for processing. In models with
deadlines, each job j should be completed by its deadline dj , and a job which is completed before
its deadline is called early, otherwise a job is called late.

A feasible schedule is an assignment of jobs to machines, together with the specification of the
time interval(s) when the job is processed. In non-preemptive settings, this reduces to specifying
the machine and start time Sj for any job j. The precise definition of feasibility clearly depends
on the particular model, but always comprises the requirement that each job must be completely
processed and no machine can process more than one job at a time. If jobs have release dates, for
example, no job must be started before its release date rj.

With respect to the objective of scheduling, we address several, classical objectives, which will
always depend on the completion times of the jobs. Given a schedule, denote by Sj and Cj the
start time and completion time of job j, respectively. Then the makespan of a schedule is the latest
job completion time, denoted by Cmax := maxj Cj . Jobs also might have weights wj ≥ 0, denoting
a priority for being processed early. Then the total weighted completion time is

∑

j∈J wj Cj. These
job weights wj could, for example, be deducted from an inventory value, and they can be interpreted
as opportunity costs for delaying job j one unit of time.

Most models that we address represent NP-hard combinatorial optimization problems; for a
survey and references, see, for example, the paper by Lawler, Lenstra, Rinnooy Kan, and Shmoys
(1993). In addition, we address scheduling models that are online, thus the complete problem
instance is not given at the outset, but only revealed gradually over time. For example, the
existence of jobs might only become known upon their release dates rj. For an introduction to
online scheduling problems and models, see, for example, the paper by Pruhs, Sgall, and Torng
(2004).

It should be mentioned that research in scheduling has addressed many more features and
models than discussed here. For example, there might be precedence constraints between jobs,
saying that the processing of job j may only start after another job i has been finished. Or the
processing of jobs might need multiple resources, rather than one machine, and resources may be
non-renewable. Also, there are other objectives than those considered here. We have decided to
leave these models out of consideration, because—to the best of our knowledge—the combination
of optimization and game theory has only been applied to machine scheduling models.

2.2 Concepts in Game Theory and Mechanism Design

We next define some basic notation for game theoretic concepts used throughout the paper. In
addition, we introduce problem specific notation and concepts when needed, and indicate when we
deviate from the game theoretic notation introduced here.

A crucial element in game theoretic settings is the fact that we have a set of interacting agents.
In the scheduling models we address, this will either be the set of jobs J or the set of machines M .
Let us say we have ℓ agents, then either ℓ = n or ℓ = m. In some settings, an agent k ∈ {1, . . . , ℓ}
may own a piece of information that is not publicly known, its type tk. Typical types are, for
example, the speed si of a machine-agent i ∈ M , or the weight wj of a job-agent j ∈ J . The
possible types for agent k are denoted by Tk. Furthermore, let T = T1 × · · · × Tℓ denote the type

4

space of all agents. Next to the private information of agents, there is usually public information,
as for example the number of machines or the type space of the agents (though not their actual
types).

In a game, agents have to choose between several possible actions. An action could be that
jobs have to select a machine on which they want to be processed, or that machines have to report
their actual speed. We denote by Ak the possible actions of agent k and by A = A1 × · · · × Aℓ the
action space of all agents. The outcome of the game depends on the actions of all agents. In the
games we consider, the outcome will always be a (feasible) schedule. Therefore, by Y we denote all
(feasible) schedules.

Some care is required in order to translate ‘problem instances’ and ‘algorithms’ to a game
theoretic setting. First, the term ‘problem instance’ that is used in optimization refers to both
the public and the private information of a game. Let us denote by I the public information of a
game. Then the equivalent of an algorithm is usually called an allocation algorithm, denoted by
α; it computes an outcome (a schedule) on the basis of the public information I together with the
actions of all agents. More precisely, α : I ×A → Y . Since there is hardly danger of ambiguity, we
usually omit the public information I and write α : A → Y . To give an example, suppose that the
jobs are agents and that their action is to select a machine. Then, A = Mn is the action space, and
the public information I consists of m, the number of machines, n, the number of jobs, as well as
the set of processing times of all jobs {pj | j ∈ J}. Assume that the allocation of jobs to time slots
is defined by the Local SPT rule: Each machine processes its jobs in the order of non-decreasing
processing times (SPT, shortest processing time first). For given actions a = (a1, . . . , an) of all n
jobs, the allocation algorithm α thus assigns job k to machine ak, in such a way that k is processed
after all jobs j with aj = ak and with pj < pk. (To make the game unambiguous, a tie breaking rule
would be required for jobs with equal processing times assigned to the same machine. We assume
that ties are broken in favor of jobs with smaller index j.) Notice that jobs are informed about the
public information I, such as the number of available machines and the processing times of other
jobs.

Agents will appreciate different outcomes of the game (i.e., schedules) differently. We express
this by the valuation of an agent for a certain schedule. Moreover, the valuation of agent k for a
schedule y ∈ Y might depend on its actual type tk. Therefore, agent k’s valuation for outcome y is
usually denoted by vk(y|tk). Here, schedule y = α(a) depends on the actions a of all agents. If the
allocation algorithm α is clear from the context, we also write vk(a|tk), for convenience. If schedule
y is preferred over y′ by agent k (being of type tk), we assume that vk(y|tk) > vk(y

′|tk). Thus the
higher the valuation the better. For a job-agent j, for example, the valuation for a certain schedule
might be −Cj, meaning that the job-agent wants to be finished as early as possible.

Given the public information, an agent’s choice of an action depends on its type. Therefore, we
need to define the strategy xk of an agent k as a mapping from the agent’s type space into its action
space. Let Xk = {xk |xk : Tk → Ak} denote the strategy space of agent k and let X = X1×· · ·×Xℓ

be the possible strategies of all agents. For example, suppose a job j has to choose for being
processed on one of two machines with different speeds, say machine 1 with speed s1 = 1 and
machine 2 with speed s2 = 2. Suppose further that the job could be processed immediately on the
slow machine 1, whereas it has to wait one time unit until the fast machine 2 becomes available.
Assume that the type tj of job j is just its processing time pj (on a unit speed machine), and its
valuation for an outcome (a schedule) is −Cj. Then the job’s preferred strategy would be to choose
the slow machine 1 if pj ≤ 2, but to wait for the fast machine 2 if pj > 2.

As a central authority, we evaluate the overall quality of a schedule by the objective value that
it achieves. Clearly, the agent’s choices of actions influence the quality of the schedule. In order to
induce agents to choose their actions in a way that is favorable for the overall quality of a schedule,

5

it is common to manipulate the agents by introducing payments. Such payments depend on the
actions of all agents and specify for each agent how much (money) is to be payed (or received) by
that agent. Given the actions a of all agents, let πk(a) denote the required payment for agent k.
This could be both positive or negative. The overall payment scheme π is then a mapping from
the action space A to the space of all possible payments. Assuming we have ℓ agents, we thus have
π : A → R

ℓ. (More precisely, we should write π : I × A → R
ℓ.)

Payments clearly change the appreciation of an agent for a certain outcome (i.e., schedule).
Therefore, the preferences of agents over the possible schedules will depend on their valuations for
the schedule as well as the associated payments. In the models we address, we express the relation
of valuations to payments by so-called quasi-linear utilities. That means that the utility uk that
an agent k receives from a schedule is just the valuation minus the payment. More precisely, if
a schedule y = α(a) is computed by some allocation algorithm α on the basis of actions a of all
agents, with associated payments π(a), then the utility of agent k (being of type tk) is given by
uk(α(a)|tk) = vk(α(a)|tk)−πk(a). Finally, notice that we assume that agents are rational ; meaning
that they aim at maximizing their utilities.

3 Models with Complete Information

When agents do not have any private information, we talk about games with complete information.
In these settings, a strategy of an agent is simply the choice of an action, and it does not depend on
any private information. Therefore, we can identify strategies Xk with actions Ak for every agent.
(Recall that in models where agents have private types tk, a strategy xk ∈ Xk maps possible types
from Tk to actions in Ak.) As it is common practice in game theory, we will adopt the term strategy
for the actions of agents, and we will use Xk instead of Ak. A game is then simply a mapping from
the set of strategies of the agents to the set of schedules, coinciding with the allocation algorithm α
defined earlier. An agent k’s valuation for a schedule y ∈ Y can be written simply as vk(y), because
it does not depend on a potential type tk of that agent. Since the schedule y only depends on the
agent’s strategies, the valuation can also be expressed as the valuation for a certain strategy vector
vk(x) for x ∈ X.

In a game with payments, we can compute the utility of an agent k from its valuation for a
certain strategy vector x and its payment given that strategy vector x as uk(x) = vk(x) − πk(x).
In a game without payments, an agent’s utility equals its valuation; we use the term utility also in
that case.

In general, agents are also allowed to play mixed strategies. A mixed strategy of an agent k is
a probability distribution over the set of its pure strategies Xk. We denote the set of probability
distributions over the pure strategy set Xk by ∆(Xk). For a given vector of mixed strategies, the
utilities for the individual agents as well as the objective function value become random variables.
A Nash equilibrium is then defined as follows.

Definition 1. A strategy vector x = (x1, . . . , xℓ) ∈ ∆(X1)×· · ·×∆(Xℓ) is called Nash equilibrium
if for every agent k = 1, . . . , ℓ

E[uk(x)] ≥ E[uk(x1, . . . , xk−1, x
′
k, xk+1, . . . , xℓ)] ∀x′

k ∈ ∆(Xk).

Here, E[·] denotes the expectation. In a model where only pure strategies are allowed, this definition
reduces to the following.

Definition 2. A strategy vector x = (x1, . . . , xℓ) ∈ X1 × · · · × Xℓ is called pure strategy Nash
equilibrium if for every agent k = 1, . . . , ℓ

uk(x) ≥ uk(x1, . . . , xk−1, x
′
k, xk+1, . . . , xℓ) ∀x′

k ∈ Xk.

6

In general, Nash equilibria in pure strategies do not necessarily exist. Existence of Nash equi-
libria is only guaranteed if agents are allowed to play mixed strategies. Therefore, an interesting
question is the existence of pure strategy Nash equilibria for a given problem. Moreover, one is
interested in algorithms to compute pure or mixed strategy Nash equilibria (efficiently).

A third issue that is addressed in the literature that is specific to games with complete informa-
tion is the following question. How does the objective value that results from a Nash equilibrium—
thus a solution induced by utility maximizing selfish agents—compare to the optimal objective
value. The latter might just be computed by some central authority. The extent to which the
objective value deteriorates due to the lack of central coordination is called the price of anarchy.
It can be defined for pure as well as for mixed strategy settings.

Definition 3. For a minimization problem, let VOPT be the optimal objective value and let VNE be
the worst possible objective value achieved by any (pure-strategy) Nash equilibrium. Then the price
of anarchy (of pure Nash equilibria) is defined as

POA =
VNE

VOPT
.

Accordingly, one defines the price of anarchy as VOPT/VNE in a maximization problem. The
study of the price of anarchy as the worst case ratio between the objective value of a Nash equi-
librium and that of the overall system optimum was initiated by Koutsoupias and Papadimitriou
(1999). They were motivated by the fact that Nash equilibria in general do not optimize the overall
performance of the system, the most prominent example being the Prisoner’s Dilemma, see e.g.
(Owen 1995). In a part of the literature the price of anarchy is also referred to as coordination
ratio.

The following sections highlight a sample of different scheduling settings, their Nash equilibria,
and the corresponding prices of anarchy.

3.1 The Price of Anarchy in Congestion Models

We first define the model as described and analyzed by Koutsoupias and Papadimitriou (1999).
Consider n job-agents j ∈ J = {1, . . . , n} with processing times pj that have to be processed on m
machines i ∈ M = {1, . . . ,m} with possibly different speeds si > 0. This is the related machine
scheduling model, and if all speeds si are equal, the parallel machine scheduling model. Each pure
strategy of an agent corresponds to the deterministic selection of one of the machines. A mixed
strategy of agent j assigns a probability qj

i to every machine i, such that
∑m

i=1 qj
i = 1 for all j.

We call the model congestion model due to the following assumption. It is assumed that the
valuation of any job for a given schedule is determined by the total processing time of the jobs
assigned to the same machine. Stated otherwise, jobs are released from a machine only when the
machine has finished all the jobs assigned to it. We therefore define the utility of job j with
strategy i ∈ M as follows. For any vector of pure strategies (i, i−j) := (i1, . . . , ij−1, i, ij+1, . . . , in) ∈
{1, . . . ,m}n,

uj(i, i−j) = − 1

si

∑

k:ik=i

pk.

The expected utility of agent j when the mixed strategy vector (q1, . . . , qn) is played is then

E[uj(q
1, . . . , qn)] = −

m
∑

i=1

qj
i

si

pj +
∑

k 6=j

qk
i pk

 .

7

The objective of the central authority is to minimize the makespan of the overall schedule, i.e.

VOPT = min
i1,...,in

max
i

1

si

∑

j:ij=i

pj .

The model was originally motivated by regarding the machines as network links and the jobs as
traffic that has to be routed via the links. The utility of each agent is then defined by the delay
it experiences when being routed via a specific link, caused by the corresponding total congestion
of that link. The utilities as defined above are therefore also called linear cost functions, as the
congestion depends linearly on the total load assigned to that link.

For the case with two identical machines, i.e., machines with equal speeds, it was shown that
the price of anarchy (for mixed strategies) is equal to 3/2 (Koutsoupias and Papadimitriou 1999).
We present their example showing why the price of anarchy is at least 3/2.

Example 4. Consider two jobs with p1 = p2 = 1 and two machines with unit speed. Then a mixed
Nash equilibrium is the choice qj

i = 1/2 for i, j = 1, 2. In that Nash equilibrium, both jobs choose
the same machine with probability 1/2, resulting in makespan 2. With probability 1/2, the jobs are
processed by different machines, which gives a makespan of 1. Therefore, the expected objective
value is 3/2. The optimum is to assign both jobs to different machines, yielding an objective value
of 1. Therefore the price of anarchy for minimizing the schedule makespan in the congestion model
is at least 3/2.

A matching upper bound of 3/2 for the price of anarchy can be derived as well.

Theorem 5 (Koutsoupias and Papadimitriou 1999). For m = 2 identical machines, the price of
anarchy for minimizing the makespan in the congestion model is 3/2.

Let us briefly summarize further (and more general) results by Koutsoupias and Papadimitriou
(1999) and Czumaj and Vöcking (2002).

For an arbitrary number m of identical machines, Koutsoupias and Papadimitriou (1999) show
that the POA is at least Ω(log m/(log log m)). This result goes back to the classical bins-and-balls
result: When throwing m balls into m bins uniformly at random, then the expected maximum
number of balls in any bin is Θ(log m/(log log m)). To translate this into the given setting, consider
the case with m machines and m jobs with unit processing times. One can check that there is a
Nash equilibrium where every job randomizes uniformly over all machines. In this Nash equilibrium,
the expected makespan is Θ(log m/(log log m)), due to the bins-and-balls result. In the optimal
solution, however, each machine processes exactly one job, yielding a makespan of 1. The claimed
lower bound on the POA follows. Czumaj and Vöcking (2002) establish a matching upper bound
of O(log m/(log log m)) for the POA on m machines; they even give an exact expression for the
price of anarchy for that case.

For the case with two related machines (two machines with different speeds), the POA is at least
as large as the golden ratio φ ≈ 1.618 (Koutsoupias and Papadimitriou 1999). They also conjecture
that the POA for two machines with different speeds is not more than φ ≈ 1.618; yet this remains
an open question. For the more general case with m related machines, Czumaj and Vöcking (2002)
show that the price of anarchy is in Θ(log m/(log log log m)). This completes the picture for models
with linear cost functions and identical or related machines. For other extensions (e.g., non-linear
congestion models), we refer to the survey by Czumaj (2004).

Clearly, the price of anarchy when mixed strategies are allowed is at least as large as the price
of anarchy when only pure Nash equilibria are considered. Pure strategy Nash equilibria are not

8

analyzed by Koutsoupias and Papadimitriou (1999), neither by Czumaj and Vöcking (2002), hence
we shortly elaborate on that issue here.

Theorem 6. For m = 2 identical machines, the price of anarchy of pure Nash equilibria for
minimizing the schedule makespan in the congestion model is 4/3.

Proof. To see that the POA is at leat 4/3, consider the following example. There are four jobs
with p1 = p2 = 1 and p3 = p4 = 2. In an optimal solution, every machine processes one job of
length 1 and one of length 2, yielding a makespan of 3. One pure Nash equilibrium is the strategy
vector (1, 1, 2, 2), i.e., the two short jobs go on the first machine, whereas the two long jobs go on
the second machine. In that situation none of the jobs has an incentive to change the machine
unilaterally. The makespan of this Nash equilibrium is 4, which proves that 4/3 is a lower bound
on the price of anarchy of pure Nash equilibria.

To prove that the POA is at most 4/3, consider any schedule in (pure) Nash equilibrium. Denote
by L1 and L2 the total loads of machines 1 and 2, respectively, and assume w.l.o.g. L2 ≥ L1. Let
δ = L2 − L1 ≥ 0. The makespan of the schedule in Nash equilibrium is hence VNE = L2 = L1 + δ.
If there is only one job on machine 2, then no schedule can have a smaller makespan, and the
schedule is optimal. Therefore, we assume that there are at least two jobs on machine 2. Any
job on machine 2 must have a processing time at least δ, as any job with smaller processing time
would have an incentive to change to machine 1. Therefore, L1 + δ ≥ 2δ and thus L1 ≥ δ. Since
no schedule can do better than distributing the total processing time equally over both machines,
VOPT ≥ L1 + δ/2. Thus we have

POA =
VNE

VOPT
≤ L1 + δ

L1 + δ
2

.

This expression is maximized when L1 is small. Using L1 ≥ δ, we therefore get

POA ≤ 2δ
3
2δ

=
4

3
.

In fact, the same proof technique works for an arbitrary number of machines m. One derives
that the price of anarchy is at most 2 − 2/(m + 1) (Finn and Horowitz 1979). A matching lower
bound was given by Schuurman and Vredeveld (2006).

Theorem 7 (Finn and Horowitz 1979, Schuurman and Vredeveld 2006). For an arbitrary number
of identical machines, the price of anarchy of pure Nash equilibria for minimizing the makespan in
the congestion model is 2 − 2/(m + 1).

3.2 The Price of Anarchy in Sequencing Models

In the models of the previous section, the utility of any job assigned to a certain machine does only
depend on the total load of that machine, but not on the sequence of the jobs on that machine.
Next we discuss models where each job j’s utility depends only on its own completion time Cj, and
is independent of the processing that might occur later than Cj on the same machine.

Clearly, different local sequencing policies on the machines will yield different Nash equilibria,
and the price of anarchy will depend on the employed local sequencing policies. The analysis of
local sequencing policies in such settings was termed coordination mechanisms in the paper by
Christodoulou, Koutsoupias, and Nanavati (2004). However, we prefer to not use this term in

9

this context, as we reserve the term “mechanism” for problems where agents have private (type)
information; this is not the case here.

In the following, we examine the price of anarchy in different scheduling models and with
different local sequencing policies. As in the preceding section, the central authority objective
is to minimize the makespan Cmax of the overall schedule. Our aim is to only highlight a few
phenomena and proof techniques rather than to give a complete survey of the known results. For a
more comprehensive overview, we refer to the paper by Immorlica, Li, Mirrokni, and Schulz (2005).

Consider again the setting where n job-agents have to choose one out of m machines to be
processed on, thus the jobs’ actions are again (i1, . . . , in) ∈ Mn. Each job seeks to minimize its
own completion time Cj , thus

uj(i1, . . . , in) = −Cj(i1, . . . , in) ,

where Cj(i1, . . . , in) is the completion time of job j in dependence on the jobs’ actions and the
sequencing of the jobs per machine.

We will use the term local sequencing policy to denote the sequencing policies implemented
locally by the machines. As it turns out, for some local sequencing policies the schedules resulting
from (pure strategy) Nash equilibria coincide with the outcome of well-known, classical scheduling
algorithms. In such cases, for analyzing the price of anarchy we can just exploit well known results
on the performance of those scheduling algorithms. To avoid confusion, note that we use the term
‘policy’ only for local sequencing policies, while we use the term ‘algorithm’ only for (centrally
coordinated) scheduling algorithms.

We consider the most general of the three scheduling models, namely unrelated machine schedul-
ing; thus if job j is scheduled on machine i, its processing time is pij. In the Local SPT policy, every
machine processes the jobs that have selected that machine in order of non-decreasing processing
times. As it turns out (Immorlica et al. 2005), the pure strategy Nash equilibria of the Local
SPT policy coincide with the schedules that result from the Ibarra-Kim algorithm (Ibarra and Kim
1977). Notice that we assume in both cases that ties between jobs with equal processing times on
one machine are broken in favor of the job with smaller index.

Ibarra-Kim algorithm. In each of the τ = 1, . . . , n iterations of the algorithm, select
a pair (j, i) where j is an unscheduled job and i is a machine. If Cτ

j (i) denotes the
completion time of job j when scheduled after all jobs already assigned to machine i in
iterations 1, . . . ,τ − 1, we select (j, i) as argmini,jC

τ
j (i). We break ties by choosing a

minimal j. In iteration τ , job j is then scheduled on machine i after all jobs already
scheduled on i.

Theorem 8. For unrelated (related, parallel) machines, the set of pure Nash equilibria for the
Local SPT policy is precisely the set of solutions of the Ibarra-Kim algorithm.

The proof of this result by Immorlica et al. (2005) is deferred to the full version of their paper; we
therefore give a proof here.

Proof. Consider any job j, and consider the iteration when the Ibarra-Kim algorithm places job j
on a machine minimizing j’s completion time. At that iteration, for all machines i, and all jobs k
already scheduled on machine i, it holds that pik < pij (or such job k has the same processing time
but a smaller index than j). Thus, in the final schedule, assuming that machines implement the
Local SPT policy, j cannot be processed before any of those jobs k either. Given this constraint,
however, j is already sitting on a machine that minimizes its completion time. Thus, j cannot

10

improve its completion time by unilaterally changing to another machine. That means that the
Ibarra-Kim schedule is a Nash equilibrium for the Local SPT policy.

Conversely, consider any schedule that is a pure strategy Nash equilibrium for the Local SPT
policy. In that schedule, for any job j denote by ij the machine that hosts job j and let CN

j be
the completion time of job j (N for Nash equilibrium). Sort the jobs in order of non-decreasing
completion times CN

j . Note that jobs with equal completion times must be scheduled on different
machines; let their respective order be chosen with respect to their index. We now schedule the
jobs in this order on their respective machines ij , and claim that this coincides with a run of the
Ibarra-Kim algorithm. We need to show that whenever the τth job, say job j, is scheduled on its
machine ij , the combination (j, ij) minimizes the completion time Cτ

k (i) among all combinations
of unscheduled jobs k and machines i, where ties are broken by job index k. Suppose this is not
the case and let (j, ij) be the first job-machine pair for which the claim does not hold, j being the
τth job in the given order. Then in iteration τ , there is a different job-machine pair (k, i) with
Cτ

k (i) < Cτ
j (ij) or Cτ

k (i) = Cτ
j (ij) and k < j. Choose (k, i) such that Cτ

k (i) is minimum, and break
ties according to smallest job index.

First, we argue that Cτ
k (i) < CN

k . Indeed, since

Cτ
k (i) ≤ Cτ

j (ij) = CN
j ≤ CN

k , (1)

we have Cτ
k (i) ≤ CN

k . Assume that Cτ
k (i) = CN

k . Then we conclude from (1) that Cτ
k (i) = Cτ

j (ij),

thus by the choice of k we must have k < j. But by (1) we also have that CN
j = CN

k . This, together
with k < j, is a contradiction to the definition of our procedure, since we break ties according to
smaller job index. Hence we must have Cτ

k (i) < CN
k .

Next we claim that all jobs l that are hosted by machine i in the Nash-equilibrium, and that
would precede k according to the Local SPT-policy if k would chose machine i, are already present
on machine i at iteration τ . To prove this claim, let l be a such a job. Since l would precede k,
either pil < pik, or pil = pik, but l < k. In both cases, if l is not yet scheduled at iteration τ , its
existence contradicts the choice of k.

This claim implies that in the Nash equilibrium, job k could improve its completion time CN
k

to Cτ
k (i) < CN

k by choosing machine i, a contradiction.

Utilizing this result, the price of anarchy of pure Nash equilibria for the Local SPT policy can be
derived from known results on the performance of the Ibarra-Kim algorithm. Using such results by
Finn and Horowitz (1979) and Schuurman and Vredeveld (2006) for parallel machines, by Aspnes,
Azar, Fiat, Plotkin, and Waarts (1997) and Immorlica et al. (2005) for related machines, and by
Ibarra and Kim (1977) for unrelated machines, we get the following.

Theorem 9. The price of anarchy for minimizing the makespan in the sequencing model, when
using the Local SPT policy on each machine, is

• 2 − 2/(m + 1) on parallel machines,

• Θ(log m) on related machines,

• and upper bounded by m on unrelated machines.

For the sake of completeness, we mention that for the case of unrelated machines, Immorlica
et al. (2005) show that the price of anarchy of the Local SPT policy is at least log m. This
result, however, does not follow from the analysis of the Ibarra-Kim algorithm; it is based on other
techniques.

11

For the case of parallel machines, the Ibarra-Kim algorithm is in fact equivalent to the classical
greedy SPT algorithm.

Greedy SPT algorithm. Whenever a machine becomes idle, start a job with the
shortest processing time among all remaining unscheduled jobs.

Theorem 9 states that this algorithm yields a schedule with makespan no more than 2− 2/(m + 1)
times the optimal makespan. However, for the parallel machine case, the LPT algorithm yields an
even better performance bound of 4/3 − 1/(3m) (Graham 1966).

Greedy LPT algorithm. Whenever a machine becomes idle, start a job with the
longest processing time among all remaining unscheduled jobs.

This motivates the analysis of the Local LPT policy on parallel machines. Again, it can be
shown that pure strategy Nash equilibria correspond to the output of the greedy LPT algo-
rithm (Christodoulou, Koutsoupias, and Nanavati 2004). The well known analysis of the LPT-
algorithm by Graham (1966) now yields the following.

Theorem 10 (Christodoulou, Koutsoupias, and Nanavati 2004). For the parallel machine setting,
the price of anarchy for minimizing the makespan in the sequencing model, when using the Local
LPT policy on each machine, is 4/3 − 1/(3m).

Clearly, from the above result it follows that the price of anarchy is at least 4/3 − 1/(3m) also
for related (or unrelated machines). We mention the following result without a proof.

Theorem 11 (Graham 1966, Immorlica et al. 2005). For the related machine setting, the price of
anarchy for minimizing the makespan in the sequencing model, when using the Local LPT policy
on each machine, is bounded as follows: 4/3 − 1/(3m) ≤ POA ≤ 2 − 2/m.

Consider now the case of unrelated machines. In contrast to the price of anarchy of the Local
SPT policy, which is at most m by Theorem 9, it is unbounded for the Local LPT policy. To that
end, consider the following example.

Example 12. Consider two machines 1 and 2 and two jobs 1 and 2. Let p11 = p22 = 1 and
p12 = p21 = K for some constant K > 0. Then in one Nash equilibrium, job 1 is processed by
machine 1 and job 2 by machine 2. The makespan of the resulting schedule is 1. In the other
Nash equilibrium, job 1 is processed on machine 2 and job 2 on machine 1. Because longer jobs are
processed before shorter ones on every machine, unilaterally changing the machine is not beneficial
for either job. The makespan is K in this case. Therefore, the price of anarchy is equal to K and
is hence unbounded.

The question of existence of pure strategy Nash equilibria in the above mentioned settings is
often answered by showing that a certain local sequencing policy constitutes a so-called potential
game. This method is used by Immorlica et al. (2005) for analyzing the Local SPT policy for
the case of related machines. Potential games have a potential function mapping strategy vectors
to real numbers such that the potential function decreases whenever an agent unilaterally changes
its strategy in such a way that its own utility increases. Minima of the potential function then
correspond to pure strategy Nash equilibria of the game. Potential functions where first used by
Rosenthal (1973) and formally introduced by Monderer and Shapley (1996). We refer to those
references for further reading.

Notice that the link to potential games also establishes a close relationship to local search
algorithms in optimization. One can define a local search neighborhood of a given strategy vector

12

by considering all strategy vectors where only one agent has changed its strategy to the best
response against the given strategies of the other agents. The potential function takes the role of
the objective function of the local search. Local optima of those neighborhoods then correspond
to pure strategy Nash equilibria. The analysis of the quality of local optima is therefore closely
related to the analysis of (pure strategy) Nash equilibria. The quality of local optimal of several
neighborhoods in machine scheduling was analyzed, for example, by Schuurman and Vredeveld
(2006).

3.3 The Price of Anarchy for Other Objective Functions

To our knowledge, the price of anarchy in scheduling has almost exclusively been studied with
respect to the makespan objective. However, the strategic behavior of a job-agent that seeks to
minimize its own completion time is not affected by the objective function of the central authority.
Therefore, the Nash equilibria for the different models discussed in the previous section remain
Nash equilibria if only the central authorities’ objective function is modified.

As an example, we consider a model that differs only slightly from the models in the previous
section. Each job-agent now has a weight wj additionally to its processing time pj, and as before,
seeks to be finished as early as possible. The strategy of each job remains the choice of a machine. As
central objective we consider the minimization of the total weighted completion time

∑

j∈J wj Cj .
The most natural (because optimal) local sequencing policy on the machines is then the well

known Local WSPT policy, also known as Smith’s rule: each machine processes its jobs in the
order of non-increasing ratios wj/pj . For each machine individually, this yields the minimum total
weighted completion time

∑

j∈J wj Cj (Smith 1956). Consider now the following algorithm.

(Ibarra-Kim version of) WSPT algorithm. Sort the jobs in order of their weight
over processing time ratios wj/pj, largest first. In that order, schedule each job on
the machine that minimizes its completion time when scheduled after all jobs already
scheduled on that machine.

Notice that for parallel machines, this algorithm reduces to the classical WSPT algorithm that just
scheduled the jobs greedily in order of non-increasing ratios wj/pj . The worst case behavior of this
algorithm has been analyzed by Kawaguchi and Kyan (1986). Similar to the proof of Theorem 8,
one can show that the set of Nash equilibria of the Local WSPT policy is equal to the set of all
possible outputs of this WSPT algorithm.

Theorem 13. For related (parallel) machines, the set of pure Nash equilibria for the Local WSPT
policy is precisely the set of solutions of the above WSPT algorithm.

Consequently, the price of anarchy of the Local WSPT policy follows from the analysis of that
algorithm. For parallel machines, the work of Kawaguchi and Kyan (1986) thus yields the following.

Theorem 14. For parallel machines, the price of anarchy of the Local WSPT policy for minimizing
∑

wjCj in the sequencing model is (
√

2 + 1)/2 ≈ 1.207.

For the case of related machines, we are not aware of non-trivial bounds on the price of anarchy.
For the unrelated machine case, it is not even clear whether or not a pure strategy Nash equilibrium
exists. However, if all jobs have the same weights, then the Local WSPT policy is equivalent to
the Local SPT policy. The existence of pure strategy Nash equilibria then follows from Theorem 8.
Also for this case, however, we are not aware of any non-trivial bound on the price of anarchy.

13

4 Models with Private Information

In the previous section we addressed the question what happens if in a scheduling application a
part of the decisions is left to selfish job agents. Given various policies that determine how jobs are
scheduled on the selected machines, we compared the objective in equilibrium with the objective
of the optimal solution. In this section we additionally assume that the agents own some private
information, namely their types, and these are not publicly known. For any given agent, its type
will influence its action in the game. Since agents do not know other agents’ types, they do not
know which actions are beneficial for the other agents and therefore which actions other agents are
likely to chose. This additional uncertainty results in more complicated equilibrium concepts than
in the previous section. Our general goal is to design allocation algorithms and associated payments
that discourage agents from gaming by pretending false types, because wrong information about
types makes it often impossible to select an allocation that optimizes the objective of the original
optimization problem. We start with some general notation, then discuss general techniques and
key results, and finally review a couple of interesting models related to scheduling.

4.1 Mechanism Design

An allocation algorithm α together with a payment scheme π is usually referred to as a mechanism,
denoted by µ = (α, π). We will present several examples for mechanisms in the following sec-
tions. Next, we introduce the equilibrium that is most robust towards the information uncertainty
described above and that is at the same time the one that is best studied in the algorithmically
oriented literature in mechanism design.

Recall that for agent k, a strategy xk is a mapping from types tk to actions ak. We denote by
t−k, x−k and a−k the vectors of types, strategies and actions respectively of all agents other than
k. For the type, strategy and action vector of all the agents, we then write (tk, t−k), (xk, x−k), and
(ak, a−k).

Definition 15 (dominant strategy equilibrium). Let µ = (α, π) be a mechanism. A strategy vector
x ∈ X is called a dominant strategy equilibrium, if for all agents k, for all types tk of agent k, for
all actions a−k of the other agents and all alternative actions ak of agent k it holds that

vk(α(xk(tk), a−k)|tk) − πk(xk(tk), a−k) ≥ vk(α(ak, a−k)|tk) − πk(ak, a−k).

Remarkably, this means that independent of which actions the other agents take, it never pays
off for any agent k, to deviate from its strategy xk.

A class of mechanisms that receive great attention in the literature (Briest, Krysta, and Vöcking
2005; Gui, Müller, and Vohra 2004; Lavi, Mu’alem, and Nisan 2003; Saks and Yu 2005) are direct
revelation mechanisms . In a direct revelation mechanism, the only action that an agent is required
to take is reporting its type, thus xk : Tk → Tk. This class of mechanisms is of particular interest
for the following reason. Assume we have a scheduling problem where part of the instance is
private information of the agents. Given reports about that private information, we can define
the allocation algorithm that merely chooses an optimal solution. (For the time being, we are
not addressing the question how this optimal solution is derived.) Let us denote it by the exact
allocation algorithm. Without payments, utility maximizing agents might misreport their private
information in such settings in order to achieve a more favorable outcome. With well-designed
payments, however, agents may get incentives to report their private information truthfully in the
following sense.

14

Definition 16 (dominant strategy incentive compatible, truthful). A direct revelation mechanism
is called dominant strategy incentive compatible, or truthful, if the strategy vector x in which each
agent truthfully reports its type, that is, xk = id for all k, is a dominant strategy equilibrium. An
allocation algorithm α is said to be truthfully implementable, if we can find a payment rule π such
that the mechanism µ = (α, π) is truthful.

Given some optimization problem, if the exact allocation algorithm is truthfully implementable,
there is of course still the issue whether the algorithm runs in polynomial time, and whether
the payments can be computed in polynomial time. If we leave this algorithmic problem out of
consideration, however, it is often surprisingly easy to provide a truthful implementation, because
many optimization problems are special cases of the setting in which we can apply so-called Vickrey-
Clarke-Groves (VCG) payments. In what follows we use the notation by Roberts (1979).

Definition 17. Given ℓ agents, their types t1, . . . , tℓ, valuation functions v1, . . . , vℓ, strictly positive
weights γ1, . . . , γℓ, and constants βy for every y ∈ Y , an allocation algorithm α is called an affine

maximizer, if it chooses a schedule y ∈ Y that maximizes βy +
∑ℓ

k=1 γkvk(y|tk).

The following theorem is in this generality due to Roberts (1979). For all weights equal to 1,
it has been proven by Clarke (1971) and Groves (1973), while for the special case of single-item
auctions it has been proven by Vickrey (1961).

Theorem 18. Let an allocation algorithm α be an affine maximizer, and let for every agent k, hk

be an arbitrary function mapping type reports t−k of the other agents to real numbers. Then the
mechanism µ = (α, π) is truthful if the payments are defined as follows.

πk(t) = hk(t−k) −
1

γk

βα(t) −
∑

k′ 6=k

γk′

γk

vk′(α(t)|tk′) .

It is intuitive to give the very short proof of this important theorem.

Proof. Let us assume that agent k reports t̂k instead of its true type tk, and let t̂ = (t̂k, t−k). Since
α is an affine maximizer we have:

βα(t) +
∑

k

γkvk(α(t)|tk) ≥ βα(t̂) +
∑

k

γkvk(α(t̂)|tk),

which implies:

vk(α(t)|tk) +
1

γk

βα(t) +
∑

k′ 6=k

γk′

γk

vk′(α(t)|tk′) ≥ vk(α(t̂)|tk) +
1

γk

βα(t̂) +
∑

k′ 6=k

γk′

γk

vk′(α(t̂)|tk′).

If we subtract hk(t−k) on both sides of this inequality, we get on the left hand side the utility of
agent k for truth-telling, and on the right hand side its utility when reporting t̂k.

Note that the generality of the functions hk gives some flexibility to define payments. In
auctions, for example, one uses this flexibility to adjust prices such that agents who do not win any
object pay 0. Note further that, for fixed type report t−k, agent k pays a price that depends only
on the allocation that is selected by the affine maximizer, and not on its particular type report
by which this allocation is achieved. It is easy to see that this so-called taxation principle does
not only hold for affine maximizers and their VCG payments, but it must hold for any truthful
mechanism.

Let us provide an example application of VCG payments in the context of scheduling.

15

Example 19. Suppose there is a single machine, and there are job-agents whose characteristics
—weights wj and processing times pj— are private information. The valuation of an agent is the
negative of its weighted completion time (in order to make the agents utility maximizers). Let α be
the exact allocation algorithm, i.e., α chooses a schedule minimizing the weighted sum of completion
times. Note that this is an affine maximizer, since it maximizes the sum of agent valuations. Let
us use the notation Ck(t) for the completion time of agent k in the optimal solution of the instance
with all agents, and Ck(t−j) as the completion of agent k in the optimal solution of the instance
in which j is not present. Now choose hj(t−j) as the negative of the optimal weighted sum of
completion times if agent j is not present. We get the following VCG payments.

πj(t) = −
∑

k 6=j

wkCk(t−j) +
∑

k 6=j

wkCk(t)

=
∑

k 6=j

wk(Ck(t) − Ck(t−j)) =
∑

k delayed by j

wkpj.

Here, the last sum is restricted to those jobs that are delayed due to the presence of j. In other
words, job j pays for the decrease in utility of other agents. By Theorem 18, with these payments
agents maximize their utility by reporting their types truthfully.

Notice that the scheduling problem of Example 19 does not only allow for a truthful implemen-
tation, but at the same time is the allocation algorithm a polynomial time algorithm: The exact
allocation algorithm α just schedules the jobs in the order of non-increasing ratios wj/pj (Smith
1956). Given the reports of all agents, also the payments can be computed efficiently.

It is often the case, however, that an exact allocation algorithm is not that easily obtainable,
for example because the underlying optimization problem is NP-hard. If instead of an exponential
time exact allocation algorithm, we use an allocation algorithm that is a (suboptimal) heuristic,
this algorithm is generally not an affine maximizer, and computing payments with the VCG for-
mula on the basis of the solutions computed by the heuristic does not necessarily yield a truthful
mechanism (Nisan and Ronen 2000; Ronen 2006).

On the other hand, even if an allocation algorithm is not an affine maximizer, it might be
truthfully implementable. In order to verify whether a given allocation algorithm is truthfully
implementable, and in order to determine the required payments, a characterization of truthfully
implementable allocation algorithms is of great importance. Such a characterization has recently
been given by Saks and Yu (2005), generalizing earlier results by Bikhchandani, Chatterjee, and
Sen (2004), Gui, Müller, and Vohra (2004), Lavi, Mu’alem, and Nisan (2003), and Roberts (1979).
We start with a definition.

Definition 20 (Weak monotonicity). An allocation algorithm α is said to satisfy weak monotonicity
if for all agents k, for all types tk, t̂k of agent k, and for all types t−k of other agents:

v(α(tk, t−k)|tk) − v(α(tk, t−k)|t̂k) ≥ v(α(t̂k, t−k)|tk) − v(α(t̂k, t−k)|t̂k).
Weak monotonicity is a necessary condition for a truthful implementation of an allocation

algorithm. Indeed, using the types as given in the definition, and assuming that truthful payments
exist, we get the following two inequalities, from which weak monotonicity follows:

v(α(tk, t−k)|tk) − π(tk, t−k) ≥ v(α(t̂k, t−k)|tk) − π(t̂k, t−k)

v(α(t̂k, t−k)|t̂k) − π(t̂k, t−k) ≥ v(α(tk, t−k)|t̂k) − π(tk, t−k).

For some settings, weak monotonicity of an allocation rule is even a sufficient condition for
truthful implementability, see Theorem 24 below. The most general result of this type has been
obtained by Saks and Yu. They have shown that weak monotonicity is sufficient for convex domains:

16

Theorem 21 (Saks and Yu 2005). Let the set of outcomes Y be finite, and let for all agents k
the type be represented as a valuation vector with a valuation for every possible outcome y ∈ Y .
That is, Tk ⊆ R

Y and vk(y|tk) = tky, y ∈ Y . Furthermore, assume that all Tk are convex. Then
an allocation algorithm α : A → Y is truthfully implementable if and only if α satisfies weak
monotonicity.

The proof of Theorem 21 is based on a link that can be made between the question whether
an allocation algorithm is truthfully implementable, and the question whether particular networks
have no cycles of negative length. If the latter is the case, we can compute shortest paths in such
networks, and the network is defined such that shortest path lengths give us payments that make
the allocation algorithm truthful. This construction of truthful payments has first been given by
Rochet (1987) in a slightly different context, and also Gui et al. (2004) showed how the link to
certain networks can be used to characterize truthfully implementable allocation algorithms.

The network related to an allocation algorithm α contains a node for each outcome, in our case
for each schedule y ∈ Y . There is a directed edge (arc) from every y to every other ŷ. Now fix an
agent k and a type report t−k of the other agents, and consider the sub-network induced by those
outcomes that can be achieved by a report of agent k, fixing the report t−k of the other agents.
That is, the subnetwork contains exactly those y such that y = α(tk, t−k) for some tk ∈ Tk. On
this subnetwork we define arc lengths by:

ℓ(y, ŷ) = inf
tk :α(tk ,t−k)=ŷ

[vk(ŷ|tk) − vk(y|tk)].

By replacing ŷ by α(t̂k, t−k) in the term vk(ŷ|t) − vk(y|t), and y by α(tk, t−k) for some tk such
that α(tk, t−k) = y, one can easily verify that the network has no negative 2-cycles if and only if
weak-monotonicity is satisfied. Furthermore, by construction, all node potentials πy satisfying

πŷ ≤ πy + ℓ(y, ŷ)

correspond to payment schemes that make the allocation algorithm truthful. (Recall that due to
the taxation principle, given t−k, payments may only depend on the outcome y, and not on the
type tk by which this outcome is achieved.) Indeed:

πŷ ≤ πy + ℓ(y, ŷ) for all y, ŷ
⇔ πŷ ≤ πy + inftk:α(tk ,t−k)=ŷ[vk(ŷ|tk) − vk(y|tk)] for all y, ŷ

⇔ vk(ŷ|tk) − πŷ ≥ vk(y|tk) − πy for all y, ŷ, tk : α(tk, t−k) = ŷ.

The left hand side of the last inequality is the utility from truth-telling, the right hand side is the
utility from reporting a type that leads to any other schedule y.

It is a basic result in combinatorial optimization that such node potentials exist if and only if
the network does not have any negative length cycle. Furthermore, in such a case, the potentials
can be computed by giving an arbitrary node y a potential πy = 0, and then computing shortest
paths from this node to any other node.

It turns out that in many settings the constructed networks have no negative cycle if and only if
they have no negative 2-cycles. Theorem 21 provides an example of such a setting, other examples
were given by Bikhchandani et al. (2004) and Gui et al. (2004). In Section 4.2.2 we show how
the network can be used to provide an alternative proof for a result given originally by Archer and
Tardos (2001).

17

4.2 Performance of Truthful Mechanisms in Machine Scheduling

In this section we regard specific scheduling models from a mechanism design perspective and show
how the techniques described in the previous section can be used to analyze them. We investigate
the trade-off between mechanism design goals (truthfulness) and optimization objectives, such as
exact optimization, approximation and competitiveness (in the case of online algorithms). The first
two models studied in the following refer to off-line situations where the machines are the agents.
The two models regarded thereafter are online scheduling models with job-agents.

By the performance guarantee of an (off-line) allocation algorithm for a minimization problem,
we refer to an upper bound on the ratio between the worst possible objective value that can
be achieved by the allocation algorithm and the optimal objective value. For a mechanism, the
performance guarantee is defined with respect to the worst possible objective value that can occur
when all agents report their types truthfully. Note that we do not demand any performance
guarantee for non-truthful agents.

In an online optimization problem, the instance is not known entirely beforehand, but part
of it is only revealed over time. Therefore, any online algorithm has to make decisions on the
basis of incomplete information. In our strategic mechanism design setting, the incompleteness
of information is due to two sources—the online setting and the fact that agents have private
information. The goal is to design online mechanisms that have good properties with respect to
truthfulness and performance. In the two online models we describe, the objective is equivalent to
affine maximization. However, both problems do not allow for exact allocation algorithms due to
the online situation. We say that an online algorithm with minimization objective has performance
guarantee ̺ for ̺ ≥ 1 if the schedule resulting from the online algorithm has an objective value no
more than ̺ times the optimal off-line objective value. That is, we compare the online algorithm to
the best solution that could have been achieved if the entire instance had been known in advance.
For an online mechanism, we demand the performance guarantee only with respect to truthful
agents.

4.2.1 Unrelated Machine Scheduling with Machine Agents

In this section, we illustrate the conflict between optimizing the objective function of a given
problem and obtaining a truthful mechanism. In the setting that we discuss, it turns out to be
impossible to design a mechanism that is at the same time truthful and optimizing the objective
function. This section is based on the work of Nisan and Ronen (2001).

Consider the following strategic version of unrelated machine scheduling. The agents are the
m machines, on which n jobs have to be scheduled. The type of each machine i is the vector
ti = (ti1, . . . , tin), where tij denotes the time that machine i needs to process job j. Hence, the
type spaces are n-dimensional. The valuation of a machine for a certain schedule is the negative
of the total time it needs to process all the jobs assigned to it. The objective of the optimization
problem is to minimize the makespan. Obviously, the allocation algorithm that chooses the optimal
schedule for every instance does not belong to the class of affine maximizers.

In fact, Nisan and Ronen (2001) show that no truthful mechanism for the regarded problem can
approximate the optimal solution with an approximation factor better than 2. We simplify their
example and use the theory introduced in Section 4.1 to show the weaker result that no truthful
mechanism can exactly optimize the objective function.

Theorem 22. There does not exist a truthful mechanism that minimizes the makespan in the
strategic version of the unrelated machine scheduling problem.

18

Proof. As we have seen in the previous section, an allocation algorithm has to satisfy weak mono-
tonicity as a necessary condition in order to be truthfully implementable. Consider an instance
with two machines and four jobs. Let the second machine’s type be fixed as (1, 1, 1, 1). Consider
first the type t = (1, 1, 1, 1) for machine 1. The allocation algorithm that minimizes the makespan
has to allocate two jobs to each machine. Let w.l.o.g. jobs 1 and 2 be allocated to machine 1,
i.e., for type t = (1, 1, 1, 1) the set T = {1, 2} of jobs is assigned to machine 1. Consider now
type t′ = (ε, ε, 1 + ε, 1 + ε) of machine 1 for ε > 0, but close to zero. Now, an optimal allocation
algorithm has to assign job 1,2 and either 3 or 4 to machine 1, and the remaining job to machine 2.
W.l.o.g. let T ′ = {1, 2, 3} be the set of jobs assigned to machine 1. Then weak monotonicity reads
as follows:

v1(T
′|t′) − v1(T

′|t) + v1(T |t) − v1(T |t′) ≥ 0

⇔ −
∑

j∈T ′

t′j +
∑

j∈T ′

tj −
∑

j∈T

tj +
∑

j∈T

t′j ≥ 0

⇔
∑

j∈T\T ′

(t′j − tj) +
∑

j∈T ′\T

(tj − t′j) ≥ 0.

In our example, the left hand side of the last inequality is equal to t3 − t′3 = 1 − (1 + ε) = −ε <
0. Therefore, weak monotonicity is not satisfied and the optimal allocation algorithm cannot be
extended to a truthful mechanism. The example can easily be modified to a larger number of jobs
and machines.

In view of this negative result, the question arises which performance guarantee a truthful
mechanism can achieve. Nisan and Ronen (2001) suggest the following MinWork mechanism,
which can be viewed as auctioning each task separately in a Vickrey auction.

MinWork mechanism.
Allocation algorithm: After each machine has declared its type, assign each job to the
machine that has declared the lowest processing time for that job. Ties are broken
arbitrarily. For a vector t = (t1, . . . , tm) ∈ Tm of machine declarations, the set of jobs
allocated to machine i is denoted by αi(t).
Payment scheme: For a vector t = (t1, . . . , tm) ∈ Tm of machine declarations, the
payment for machine i is defined as πi(t) = −∑j∈αi(t)

mini′ 6=i ti′j . That is, each ma-
chine receives for each job that it processes a payment that equals the second lowest
declaration of any machine for that job.

Theorem 23 (Nisan and Ronen 2001). MinWork is truthful and an m-approximation.

Proof. The MinWork mechanism minimizes the total work done and therefore maximizes the sum
of the valuations of all machine-agents. Therefore, the allocation algorithm of the mechanism is an
affine maximizer. Set hi(t−i) := −∑n

j=1 mini′ 6=i ti′j to see that the payment scheme of MinWork is
a VCG payment scheme. Therefore, MinWork is truthful according to Theorem 18.

For the performance guarantee with respect to the makespan objective, note that the optimum
makespan VOPT is lower bounded by

VOPT ≥ 1

m

n
∑

j=1

min
i=1,...,m

tij.

19

The makespan VMW resulting from the allocation algorithm of the MinWork mechanism is upper
bounded by

VMW ≤
n
∑

j=1

min
i=1,...,m

tij,

i.e., VMW ≤ mVOPT , assuming that all agents report their true types.

In fact, Nisan and Ronen prove that the mechanism is strongly truthful, i.e., truthtelling is the
only dominant strategy for every agent.

As mentioned before, no truthful mechanism for the regarded problem can approximate the
optimal solution better than a factor of 2. Therefore, MinWork is best possible for two machines.
Moreover, the authors conjecture that also for the general case with m machines, the upper bound
of m is tight, yet this remains an open question.

4.2.2 Related Machine Scheduling with Machine Agents

Archer and Tardos (2001) consider a similar model for related machine scheduling. Again, the
agents are the machines. In contrast to the model from the previous section, the processing times
of different jobs on one machine are not independent and the type spaces of the machine-agents are
one-dimensional. More precisely, each machine i has a speed si and the type is defined to be the
inverse of this speed ti := 1/si. Each job j has a (unit-speed) processing time pj. The time that is
needed to process job j on machine i is tipj = pj/si. The action of each machine is to declare its
type. If machine i is assigned the set of jobs αi(t) ⊆ J for a vector of declarations of all machines
t = (t1, . . . , tm) ∈ Tm, then its valuation is vi(t|ti) = −∑j∈αi(t)

tipj . The objective is again to
minimize the makespan.

For this setting, Archer and Tardos derive a necessary and sufficient condition for an allocation
algorithm to be truthfully implementable. For an allocation algorithm, denote by Li(t) = Li(ti, t−i)
the total workload assigned to machine i. Then an agent’s valuation can be written as vi(t|ti) =
−ti · Li(ti, t−i).

Theorem 24 (Decreasing Work Curves, Archer and Tardos 2001). An allocation algorithm is
truthfully implementable if and only if for all agents i and all t−i ∈ Tm−1 the function Li(ti, t−i)
is a decreasing function of ti. If this is the case, then the following payments yield a truthful
mechanism

πi(ti, t−i) = −
(

hi(t−i) + tiLi(ti, t−i) −
∫ ti

0
Li(u, t−i)du

)

.

Here, hi are arbitrary functions that depend on the declarations of all agents except i.

Instead of giving the original proof by Archer and Tardos (2001), we show how Theorem 24
is implied by the results of Saks and Yu (2005) and Gui et al. (2004). We note, however, that
the original proof by Archer and Tardos (2001) even shows that the above payments are the only
payments that yield a truthful mechanism.

Proof. Convexity of the type spaces in the sense of Theorem 21 can be easily verified. It is due to
the fact that the speed and therefore its inverse can be an arbitrary positive real number and the
valuation of an agent for a certain schedule depends linearly on the inverse of the speed.

From Theorem 21, we know that weak monotonicity is a necessary and sufficient condition for
the allocation algorithm to be truthfully implementable. To verify weak monotonicity, let ti and t̂i

20

be different types of an agent i with ti < t̂i, and let the reports of the other agents be fixed as t−i.
Then weak monotonicity is equivalent to

vi((ti, t−i)|ti) − vi((ti, t−i)|t̂i) ≥ vi((t̂i, t−i)|ti) − vi((t̂i, t−i)|t̂i)
⇔ −tiLi(ti, t−i) + t̂iLi(ti, t−i) ≥ −tiLi(t̂i, t−i) + t̂iLi(t̂i, t−i)

⇔ (t̂i − ti)(Li(ti, t−i) − Li(t̂i, t−i)) ≥ 0.

This condition is satisfied whenever Li(ti, t−i) − Li(t̂i, t−i) ≥ 0, i.e., if and only if the function Li

is decreasing in the report of agent i.
For the second part of the theorem, we will use the results of Gui et al. (2004) to derive the

payment scheme given above. Let α be an allocation algorithm that satisfies the decreasing work
curves condition, let agent i and the report of the other agents t−i be fixed and let for simplicity
of notation L(ti) := Li(ti, t−i) denote the workload assigned by α to i when reporting ti. First,
we observe that there are only finitely many possible schedules that can yield only finitely many
different values of L(ti). We denote those values by Lmax =

∑

j∈J pj > · · · > L1 > L0 = 0. Using
that α satisfies the decreasing work curve condition, we get the picture in Figure 1 for the graph of
L(ti). In order to determine the payments according to the method of Gui et al. (2004), we have

Lmax

L2

L1

L0

L(ti)

ti

...

Figure 1: decreasing work curve

to determine shortest paths in the network described in Section 4.1. Let πr denote the payment
that machine i has to make if it is assigned workload Lr by the allocation algorithm. We define
π0 = 0 and determine the shortest path from the node L0 to node Lr. It can easily be shown that
if Lr3

> Lr2
> Lr1

then the arc lengths satisfy ℓ(Lr1
, Lr3

) ≥ ℓ(Lr1
, Lr2

) + ℓ(Lr2
, Lr3

). Therefore,
[L0, L1, . . . , Lr] is a shortest path from L0 to Lr. Hence, the payments can be written as:

πr =

r
∑

i=1

ℓ(Li−1, Li) =

r
∑

i=1

inf
ti:L(ti)=Li

(−tiLi + tiLi−1) = −
r
∑

i=1

(

sup
ti:L(ti)=Li

ti

)

(Li − Li−1).

Thus, if machine i is assigned a total workload of Lr, it receives a payment that is equal to the
area under the graph of min(L(ti), Lr), as depicted in Figure 2. Thus the payment to machine i is
tiL(ti)+

∫∞
ti

L(u)du. If we now let hi(t−i) =
∫∞
0 L(u)du, then the payment that machine i receives

equals tiL(ti) +
∫∞
ti

L(u)du = hi(t−i) + tiL(ti) −
∫ ti
0 L(u)du, which proves the claim.

Archer and Tardos (2001) give a randomized polynomial time allocation algorithm, which is
based on bin-packing and rounding fractional assignments of jobs to bins in a random fashion.
The allocation algorithm fulfills the decreasing work curves condition with respect to the expected
utilities of the agents. The following result is obtained.

Theorem 25 (Archer and Tardos 2001). For the strategic version of related machine scheduling
with machine agents whose private information is their speed, there exists a mechanism with the
following properties:

21

Lmax

Lr

L0

L(ti)

ti

...

...

Figure 2: payment for workload Lr

• the mechanism is truthful when agents maximize expected utilities,

• it yields a 3-approximation for the makespan of the schedule independent of the random
choices,

• the payments can be computed in polynomial time.

There also exists a deterministic allocation algorithm that fulfills the monotonicity condition
of Theorem 24 due to Kovacs (2005). The allocation algorithm given by Kovacs (2005) runs in
polynomial time and yields a 3-approximation as well. Thus, the existence of a truthful payment
scheme is guaranteed by Theorem 24. However, it is not clear whether the associated payments can
be computed in polynomial time. Other papers that have improved some of the results of Archer
and Tardos (2001) are by Auletta, De Prisco, Penna, and Persiano (2004), Ambrosio and Auletta
(2005), and Andelman, Azar, and Sorani (2005).

4.2.3 Preemptive Online Scheduling on a Single Machine with Job Agents

We now turn to online scheduling models with job agents. The following single machine model was
analyzed by Porter (2004). There is one machine that has to process n jobs, where n is not known
beforehand. Preemption of jobs is allowed. Each job j has a release date rj , a processing time pj ,
a deadline dj and a weight wj . Those four values are private information. The type of agent j is
thus tj = (rj , pj , dj , wj). The aim is to design a direct revelation mechanism, that is, jobs have to
report their types to the mechanism. We assume that a job can declare a release date r̂j ≥ rj and

a processing time p̂j ≥ pj, while it can declare an arbitrary deadline d̂j and an arbitrary weight
ŵj . The reason that we do not admit declaring a shorter processing time is that this could be
easily detected and punished by the mechanism. If job j is completed before its deadline, then its
valuation is wj , otherwise its valuation is zero. Jobs have to pay for being processed. The payments
have to be determined online as well, i.e., the payment for a job must be determined at the latest
when the job leaves the system. The central objective is to maximize the sum of the weights of all
jobs that are completed by their deadline, i.e., the goal is affine maximization. However, an exact
allocation algorithm does not exist due to the online nature of the problem. Lower bounds on the
performance guarantee of any online algorithm for the problem are given by Baruah, Koren, Mao,
Mishra, Raghunathan, Rosier, Shasha, and Wang (1992). Those bounds imply in particular that
there is no exact allocation algorithm. Porter (2004) shows the following.

Theorem 26 (Porter 2004). For the described single machine model, there exists a truthful mecha-
nism with performance guarantee ((1+

√
k)2+1), where k is an upper bound on maxj,ℓ(wℓpj)/(pℓwj)

which is known to the mechanism.

22

Notice that the mechanism is assumed to know an upper bound k on the maximum ratio
maxj,ℓ(wℓpj)/(pℓwj). In addition, the mechanism needs to know the value δmin := minj wj/pj .
The single machine processes at any point in time a job that is chosen among the available jobs
that still have a chance to be completed before their declared deadline. The choice depends on the
declared weights of the jobs, the time already spent processing each job, on k and on δmin. Jobs
are only returned at their declared deadlines. The payment that a job has to make is zero if it is
not completed before its declared deadline and equal to the minimum weight that the job could
have declared such that it still would have been finished in time, given the declarations of the other
jobs and given its own declarations on release date, deadline and processing time.

The proof of the truthfulness of the mechanism given by Porter (2004) is quite technical. In-
tuitively, the payments can be seen as VCG-payments and are chosen such that the mechanism
is truthful with respect to the weights. By returning the job not until the declared deadline it is
achieved that a job has no incentive to declare a larger deadline than the true one. Therefore, no
job has an incentive to declare a “better” type. It can be shown that also declaring a “worse” type
does not pay off.

Interestingly, Porters mechanism is essentially best possible.

Theorem 27 (Porter 2004). Under a number of (weak) conditions and assuming that k > 1, no
deterministic truthful online mechanism can have a performance guarantee better than ((1+

√
k)2+1)

for the described single machine model.

This is of special interest in view of the existence of an algorithm with performance guarantee
(1 +

√
k)2 for the non-strategic online setting, due to Koren and Shasha (1995).

4.2.4 Online Scheduling on Parallel Machines with Job Agents

In this section, we consider an online scheduling problem on m parallel machines, discussed by
Heydenreich, Müller, and Uetz (2006). In this model, job-agents with private types do not only
have to report their types, but also they have to choose a machine. The fact that jobs choose a
machine themselves requires the design of mechanisms that are no direct revelation mechanisms
anymore. The job-agents are released online over time. Each job j has a release date rj , a processing
time pj and a weight wj . The weight wj can be interpreted as the cost to agent j of one unit of time
spent waiting. Preemption is not allowed. A job j’s valuation for a schedule that yields completion
time Cj is −wjCj. Each job j has to make a report (r̂j , p̂j , ŵj) about its type tj = (rj , pj, wj).
We assume r̂j ≥ rj and p̂j ≥ pj for the same reasons as in the previous section. The objective
function that we seek to minimize is the weighted sum of completion times

∑

j∈J wjCj. Hence, the
exact allocation algorithm for this problem is an affine maximizer. However, note that we are in an
online situation. Vestjens (1997) has proven a lower bound of 1.309 for the performance guarantee
of any online (allocation) algorithm for this model. Hence, as in the previous section there is no
exact allocation algorithm.

Heydenreich et al. (2006) introduce and analyze the Decentralized Local Greedy mecha-
nism, where the Local WSPT policy as defined in Section 3.3 is used as local sequencing policy on
the machines. The motivation to use the WSPT policy locally is the fact that it yields the optimal
schedule on a single machine, given that no release dates are present (Smith 1956). The mechanism
works as follows:

Decentralized Local Greedy mechanism.
Local Sequencing: Whenever a machine becomes idle, it starts processing the job j with
highest ratio wj/pj among all available jobs that have chosen this machine.

23

Assignment: Job j arrives at time r̂j and communicates p̂j and ŵj to all machines. The
machines compute a tentative completion time and a tentative payment, on the basis
of which the job selects a machine and pays the respective tentative payment. The
payment is distributed over the already present jobs in a way described next.

The payment πj for each job j is inspired by the VCG-payments (see also Example 19). Intu-
itively, each agent pays for the loss in the tentative utility that other agents experience due to j’s
presence. That is, when j selects machine i and there is a job k on machine i that is displaced by
j according to the local sequencing policy, then the tentative completion time of k increases by p̂j .
Therefore, k’s utility decreases by wkp̂j. Job j compensates k for this loss by paying ŵkp̂j.

As we are not dealing with a direct revelation mechanism, the notion of truthfulness does not
apply. Instead, we would desire a dominant strategy equilibrium in which all jobs report truthfully
and select a machine that results in a good performance. It turns out that such an equilibrium does
not exist for the Decentralized Local Greedy mechanism. But, given the online setting and
the lack of information about future job releases, it seems reasonable to look at so-called myopic
best responses. A myopic best response is a strategy that maximizes a job’s tentative utility at
arrival or —alternatively— that maximizes a job’s utility under the assumption that it was the last
job to arrive.

Theorem 28 (Heydenreich, Müller, and Uetz 2006). For the Decentralized Local Greedy

mechanism, the following is true:

• It is a myopic best response for every job to report truthfully about its type and to select a
machine that maximizes the job’s tentative utility at arrival.

• In the restricted strategy space where all jobs j report their true weight ŵj = wj , truthful
reporting rj and pj and selecting a machine that maximizes the tentative utility at arrival is
a dominant strategy equilibrium.

• It is not possible to modify only the payment scheme while keeping the local sequencing policy
such that the resulting mechanism has a dominant strategy equilibrium in which all jobs tell
the truth.

• Given that all jobs play their myopic best response, the mechanism is 3.281-competitive.

The performance guarantee can be derived by adopting some ideas introduced by Megow, Uetz,
and Vredeveld (2006) for a slightly different (and non-strategic) setting. Indeed, one can observe
that if jobs play their myopic best responses, then the distribution of jobs over machines is almost
identical to that of the MinIncrease algorithm of Megow et al. (2006).

For this model and the described mechanism, it is not clear whether the competitive ratio
of 3.281 is best possible. For the non-strategic setting, there exists an algorithm with a better
competitive ratio of 2.62 due to Correa and Wagner (2005). However, the distribution of jobs over
machines in their algorithm is strongly based on central coordination and does not seem suitable
in a decentralized setting.

5 Conclusion

In this paper we have given an introduction to the application of game theory and mechanism
design to scheduling models. Thereby we have chosen to limit the scope of models and techniques

24

in order to be able to present the most important techniques in detail. We see several avenues of
research departing from this introduction.

Within the narrow scope of this paper the most promising research questions seem to us related
to mechanism design in the presence of multi-dimensional types, exemplified by the conjecture
by Nisan and Ronen mentioned at the end of Section 4.2.1. Roberts (1979) has shown that in
cases where the type space is completely unrestricted, meaning that every agent can have any
valuation for each of the outcomes, only affine maximizers are truthfully implementable. For more
restrictive type spaces, Lavi, Mu’alem, and Nisan (2003) could show a similar characterization only
for allocation algorithms that satisfy some additional properties. If the conjecture by Nisan and
Ronen is true, it would show that in this particular case we cannot do better than using an affine
maximizer, if we want to guarantee truthfulness. This would indicate that also in this case affine
maximizers are the only truthfully implementable algorithms.

A second avenue is related to the discussion in Section 4.2.4, which illustrates that in decen-
tralized models where job agents’ strategies are a mix of machine choices and type revelation, and
in addition agents arrive online, it seems to be difficult to provide mechanisms that are truthful
and simultaneously have a good performance. It would be interesting to explore how far we can
get with truthful mechanisms.

Third, we want to emphasize that the area of game theory and mechanism design has estab-
lished theoretical models that cover many more issues than those treated in this introduction. For
example, game theory knows a plentitude of refinements of equilibrium notions, which might be of
practical relevance, and mechanism design is also interested in other criteria than only efficiency
and truthfulness. For example, various definitions of fairness can be found in the literature. As a
point of reference we mention here the literature on matching markets, e.g., Roth, Sotomayor, and
Chesher (1990).

Finally, it is likely that also in scheduling we can benefit from the wealth of results that have
recently been derived in the context of combinatorial auctions. We recommend the book edited
by Cramton, Shoham, and Steinberg (2006) as an excellent reference. While from an optimization
point of view combinatorial auctions deal “only” with a set packing problem, many of the game
theoretic issues in their design are also relevant when the allocation rule is of a different nature,
like assigning jobs to machines, and determining their start time on the machines. In combinatorial
auctions those issues are, for example, revenue for the seller, collusion, bidding under multiple
identities (shill-bidding), information revelation, and communication complexity. It turns out that
a mechanism like the VCG mechanism, when applied to combinatorial auctions, performs badly in
terms of such additional criteria, unless rather restrictive assumptions on the bidders valuations are
fulfilled (Ausubel and Milgrom 2006). Also in scheduling, such considerations may yield interesting
insights and may be of practical importance.

Glossary

action agents have to choose between possible actions in a game or mechanism, 4

algorithm in this paper a centralized device that computes a schedule based on public information
and agents actions, in contrast to local sequencing policies used to denote by decentralized
machines to compute the sequencing of jobs, 10

allocation algorithm algorithm that computes an outcome/schedule on the basis of all public
information and all agents actions, 5

25

direct revelation mechanism A mechanism in which an agent’s only allowed action is to report
a type, which does not have to coincide with its true type, 14

dominant strategy equilibrium vector of strategies of all agents such that the strategy for each
agent is a utility-maximizing strategy independent of the actions that the other agents chose,
14

dominant strategy incentive compatible see truthful, 14

local sequencing policy the rule by which machines sequence jobs allocated to them based on
job characteristics. Examples are shortest processing time first (SPT), longest processing
time first (LPT), and largest ratio of weight over processing time first (WSPT), 10

makespan latest completion time of any job in a certain schedule, 4

mechanism in this paper an allocation algorithm together with a payment scheme, 14

Nash equilibrium vector of strategies, one for each agent, such that each of them is a best
response to the strategies of the other agents, 6

outcome in this paper the schedule resulting from a game or mechanism, 4

parallel machine scheduling scheduling problem with several machines, where each job has the
same processing time on each machine, 3

payment scheme determines payments for all agents on the basis of the agents’ actions, 5

performance guarantee provable bound on the ratio between the objective value of a solution
produced by a particular algorithm/mechanism and the objective value of the optimal solu-
tion, 18

price of anarchy given an optimization problem with decisions taken partly by selfish agents,
the maximum factor by which the objective value in equilibrium deviates from the optimal
objective value, 7

related machine scheduling scheduling problem with several machines, each of which having
their own speed, the processing time of a job on a certain machine is its unit processing time
divided by the speed of the machine, 3

schedule assignment of jobs to machines, together with the specification of the time interval(s)
when the job is processed, 4

strategy maps an agents type to an action, 5

truthful property of a direct revelation mechanism, where truth-telling is a utility maximizing
strategy for each agent independent of the actions that the other agents choose, 14

truthfully implementable property of an allocation algorithm, if there exists a payment scheme,
such that the resulting mechanism is truthful, 14

type private information of an agent, 4

26

uniform machine scheduling see related machine scheduling , 3

unrelated machine scheduling scheduling problem with several machines, where each machine
has a separate processing time for each job, 3

utility in this paper, the valuation of an agent for a particular schedule, minus the payment the
agent has to make (quasi-linear utility), 6

valuation expresses how much an agent appreciates a certain schedule (depending on its type), 5

weak monotonicity property of an allocation algorithm stating that the marginal benefit from
reporting type t instead of type s is larger if the true type is t than if the true type is s, 16

References

Ambrosio, P. and V. Auletta (2005). Deterministic monotone algorithms for scheduling on related
machines. In G. Persiano and R. Solis-Oba (Eds.), Approximation and Online Algorithms,
Volume 3351 of Lecture Notes in Computer Science, pp. 267–280. Springer.

Andelman, N., Y. Azar, and M. Sorani (2005). Truthful approximation mechanisms for schedul-
ing selfish related machines. In V. Diekert and B. Durand (Eds.), Theoretical Aspects of
Computer Science - STACS 2005, Volume 3404 of Lecture Notes in Computer Science, pp.
69–82. Springer.

Angel, E., E. Bampis, and F. Pascual (2005). Truthful algorithms for scheduling selfish tasks on
parallel machines. In X. Deng and Y. Ye (Eds.), Internet and Network Economics, Volume
3828 of Lecture Notes in Computer Science, pp. 698–707. Springer.

Archer, A. and E. Tardos (2001). Truthful mechanisms for one-parameter agents. In Proc. 42nd
Annual Symposium on Foundations of Computer Science, pp. 482–491. IEEE Computer So-
ciety.

Aspnes, J., Y. Azar, A. Fiat, S. Plotkin, and O. Waarts (1997). On-line routing of virtual circuits
with applications to load balancing and machine scheduling. Journal of the ACM 44 (3), 486–
504.

Auletta, V., R. De Prisco, P. Penna, and G. Persiano (2004). Deterministic truthful approx-
imation mechanisms for scheduling related machines. In V. Diekert and M. Habib (Eds.),
Theoretical Aspects of Computer Science - STACS 2004, Volume 2996 of Lecture Notes in
Computer Science, pp. 608–619. Springer.

Ausubel, L. and P. Milgrom (2006). The lovely but lonely vickrey auction. In P. Cramton,
Y. Shoham, and R. Steinberg (Eds.), Combinatorial Auctions, pp. 17–40. MIT Press.

Baruah, S., G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and F. Wang
(1992). On the competitiveness of on-line real-time task scheduling. Journal of Real-Time
Systems 4 (2), 125–144.

Bikhchandani, S., S. Chatterjee, and A. Sen (2004, September). Incentive compatibility in multi-
unit auctions. Working Paper.

Briest, P., P. Krysta, and B. Vöcking (2005). Approximation techniques for utilitarian mechanism
design. In Proc. 37th Annual ACM Symposium on Theory of Computing, pp. 39–48. ACM.

27

Christodoulou, G., E. Koutsoupias, and A. Nanavati (2004). Coordination mechanisms. In
J. D́ıaz, J. Karhumäki, A. Lepistö, and D. Sannella (Eds.), Automata, Languages and Pro-
gramming, Volume 3142 of Lecture Notes in Computer Science, pp. 345–357. Berlin: Springer.

Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice 11, 17–33.

Cole, R., Y. Dodis, and T. Roughgarden (2006). How much can taxes help selfish routing?
Journal of Computer and System Sciences 72 (3), 444–467.

Correa, J. R. and M. R. Wagner (2005). LP-based online scheduling: from single to parallel
machines. In M. Jünger and V. Kaibel (Eds.), Integer Programming and Combinatorial Op-
timization, Volume 3509 of Lecture Notes in Computer Science, pp. 196–209. Springer.

Cramton, P., Y. Shoham, and R. Steinberg (Eds.) (2006). Combinatorial Auctions. MIT Press.

Czumaj, A. (2004). Selfish routing on the internet. In J. Leung (Ed.), Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, Chapter 42. CRC Press.

Czumaj, A. and B. Vöcking (2002). Tight bounds for the worst-case equilibria. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 413–420. ACM-SIAM.

Finn, G. and E. Horowitz (1979). A linear time approximation algorithm for multiprocessor
scheduling. BIT Numerical Mathematics 19 (3), 312–320.

Graham, R. (1966). Bounds for certain multiprocessing anomalies. Bell System Technical Jour-
nal 45, 1563–1581.

Groves, T. (1973). Incentives in teams. Econometrica 41, 617–631.

Gui, H., R. Müller, and R. Vohra (2004, October). Dominant strategy mechanisms with multidi-
mensional types. Discussion Paper 1392, The Center for Mathematical Studies in Economics
& Management Sciences, Northwestern University, Evanston, IL.

Heydenreich, B., R. Müller, and M. Uetz (2006). Decentralization and mechanism design for
online machine scheduling. In L. Arge and R. Freivalds (Eds.), Algorithm Theory - SWAT
2006, Volume 4059 of Lecture Notes in Computer Science, pp. 136–147. Springer.

Ibarra, O. and C. Kim (1977). Heuristic algorithms for scheduling independent tasks on noniden-
tical processors. Journal of the ACM 24 (2), 280–289.

Immorlica, N., L. Li, V. S. Mirrokni, and A. Schulz (2005). Coordination mechanisms for selfish
scheduling. In X. Deng and Y. Ye (Eds.), Internet and Network Economics, Volume 3828 of
Lecture Notes in Computer Science, pp. 55–69. Springer.

Kawaguchi, T. and S. Kyan (1986). Worst case bound of an LRF schedule for the mean weighted
flow-time problem. SIAM Journal on Computing 15 (4), 1119–1129.

Kittsteiner, T. and B. Moldovanu (2005). Priority auctions and queue disciplines that depend
on processing time. Management Science 51, 236–248.

Koren, G. and D. Shasha (1995). D-over: An optimal on-line scheduling algorithm for overloaded
real-time systems. SIAM Journal on Computing 24 (2), 318–339.

Koutsoupias, E. and C. Papadimitriou (1999). Worst-case equilibria. In C. Meinel and S. Tison
(Eds.), Theoretical Aspects of Computer Science, Volume 1563 of Lecture Notes in Computer
Science, pp. 404–413. Springer.

Kovacs, A. (2005). Fast monotone 3-approximation algorithm for scheduling related machines. In
G. S. Brodal and S. Leonardi (Eds.), Algorithms - ESA 2005, Volume 3669 of Lecture Notes
in Computer Science, pp. 616–627. Springer.

28

Lavi, R., A. Mu’alem, and N. Nisan (2003). Towards a characterization of truthful combinatorial
auctions. In Proc. 44th Annual Symposium on Foundations of Computer Science, pp. 574–583.
IEEE Computer Society.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (1993). Sequencing and
scheduling: Algorithms and complexity. In Logistics of Production and Inventory, Volume 4
of Handbooks in Operations Research and Management Science, pp. 445–522. Amsterdam:
North-Holland.

Megow, N., M. Uetz, and T. Vredeveld (2006). Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research. to appear.

Mitra, M. (2001). Mechanism design in queueing problems. Economic Theory 17, 277–305.

Mitra, M. (2005). Incomplete information and multiple machine queueing problems. European
Journal of Operational Research 165, 251–266.

Monderer, D. and L. S. Shapley (1996). Potential games. Games and Economic Behavior 14 (1),
124–143.

Nisan, N. and A. Ronen (2000). Computationally feasible VCG mechanisms. In Proc. 2nd ACM
Conference on Electronic Commerce, pp. 242–252. ACM.

Nisan, N. and A. Ronen (2001). Algorithmic mechanism design. Games and Economic Behav-
ior 35, 166–196.

Owen, G. (1995). Game theory (Third ed.). San Diego, CA: Academic Press Inc.

Porter, R. (2004). Mechanism design for online real-time scheduling. In J. S. Breese, J. Feigen-
baum, and M. I. Seltzer (Eds.), Proc. 5th ACM Conference on Electronic Commerce, pp.
61–70. ACM.

Pruhs, K., J. Sgall, and E. Torng (2004). Online scheduling. In J. Y.-T. Leung (Ed.), Handbook
of Scheduling, Chapter 15. CRC Press LLC.

Roberts, K. (1979). The characterization of implementable choice rules. In J.-J. Laffont (Ed.),
Aggregation and Revelation of Preferences. North Holland Publishing Company.

Rochet, J.-C. (1987). A condition for rationalizability in a quasi-linear context. Journal of Math-
ematical Economics 16, 191–200.

Ronen, A. (2006). Incentive compatibility in computationally feasible combinatorial auctions. In
P. Cramton, Y. Shoham, and R. Steinberg (Eds.), Combinatorial Auctions, pp. 369–394. MIT
Press.

Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory 2, 65–67.

Roth, A., M. A. O. Sotomayor, and A. Chesher (Eds.) (1990). Two-Sided Matching : A Study
in Game-Theoretic Modeling and Analysis. Cambridge University Press.

Roughgarden, T. (2004). Stackelberg scheduling strategies. SIAM Journal on Computing 33 (2),
332–350.

Saks, M. and L. Yu (2005). Weak monotonicity suffices for truthfulness on convex domains. In
Proc. 6th ACM conference on Electronic commerce, pp. 286 – 293. ACM.

Schuurman, P. and T. Vredeveld (2006). Performance guarantees of local search for multiproces-
sor scheduling. INFORMS Journal on Computing . to appear.

29

Smith, W. (1956). Various optimizers for single stage production. Naval Research Logistics Quar-
terly 3, 59–66.

Vestjens, A. P. A. (1997). On-line Machine Scheduling. Ph. D. thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands.

Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed tenders. J. Finance 19,
8–37.

30

