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Abstract. We consider a Stackelberg pricing problem in directed net-
works. Tariffs have to be defined by an operator, the leader, for a subset
of the arcs, the tariff arcs. Clients, the followers, choose paths to route
their demand through the network selfishly and independently of each
other, on the basis of minimal cost. Assuming there exist bounds on the
costs clients are willing to bear, the problem is to find tariffs such as to
maximize the operator’s revenue. Except for the case of a single client, no
approximation algorithm is known to date for that problem. We derive
the first approximation algorithms for the case of multiple clients. Our
results hold for a restricted version of the problem where each client takes
at most one tariff arc to route the demand. We prove that this problem
is still strongly NP-hard. Moreover, we show that uniform pricing yields
both an m–approximation, and a (1 + lnD)–approximation. Here, m is
the number of tariff arcs, and D is upper bounded by the total demand.
We furthermore derive lower and upper bounds for the approximability
of the pricing problem where the operator must serve all clients, and
we discuss some polynomial special cases. A computational study with
instances from France Télécom suggests that uniform pricing performs
better than theory would suggest.

1 Introduction

The general setup for the tarification problem that we study involves two non-
cooperative groups, an operator that sets tariffs, the leader of the Stackelberg
game, and n clients that have to pay these tariffs, the followers of the Stackelberg
game. More precisely, we assume that a network is given, and a subset of m arcs,
the tariff arcs, are owned by an operator. The operator can set the tariffs on these
arcs for renting capacity to one or several clients. Each client wishes to route
a certain amount of a commodity on a path connecting two vertices. Such a
path can involve one or several arcs belonging to the operator, and we assume
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that each client selfishly selects a path with minimum cost to route his demand.
Before the clients select their paths, the operator has to set the tariffs, which
he does in order to maximize total revenue. In order to avoid non-boundedness,
we assume that clients always have the alternative of routing on a path without
using any of the operators arcs.

The problem we consider here is different in two aspects from the network
congestion problems studied recently, e.g., by Roughgarden and Tardos [11], and
Cole et al. [2, 3]. First, we assume that there is no congestion, hence the clients
do not influence each other. They choose minimum cost paths to route their
commodities, independent of each other. The Game Theoretic setting is only
introduced by the fact that there exist an operator trying to maximize revenue
using high tariffs, and the clients try to avoid high tariffs by choosing minimal
cost paths. Second, the pricing takes place before the users choose their paths, so
we are faced with a Stackelberg game, where the operator (leader) first sets the
tariffs, and then, subject to these tariffs, the clients (followers) react selfishly.

A natural formulation of the problem, referred to as the (general) tarifica-
tion problem, is the bilevel linear formulation of Labbé et al. [9]. They show
that already the problem with a single client is (strongly) NP-hard, given that
also negative tariffs are allowed. Roch et al. [10] show that the single client
problem remains (strongly) NP-hard, even when restricted to nonnegative tar-
iffs. In the same paper, a polynomial time O(lnm)–approximation algorithm for
the problem with a single client is proposed, where m is the number of tar-
iff arcs.

Our Results. We derive the first approximation results for the problem with
multiple clients. However, we consider a restricted variant of the problem, since
we assume that the path taken by any client utilizes at most one tariff arc.
Several applications of this particular tarification problem, to which we refer as
the river tarification problem (RTP) are briefly discussed in Section 2. Section 3
describes the model in detail. In Section 4, we show that the river tarification
problem is (strongly) NP-hard.

The quality of uniform tarification policies, where all arcs are priced with the
same tariff, is analyzed in Section 5. The problem to find an optimal uniform
tariff is well-known to be solvable in polynomial time, even for the general tarifi-
cation problem [12]. We show that uniform tarification is an m–approximation,
and this is tight. Using a simple geometric argument, we also show that uniform
tarification is a (1+lnD)–approximation, which is tight up to a constant factor.
Here, D is the total demand that is served by the operator in an optimal solu-
tion, which is upper bounded by the total demand. Hence, whenever the clients
have unit demand, this yields a (1 + lnn)–approximation.

We also consider another variant of the problem where the operator is forced
to serve all clients. We show in Section 6, by a reduction from Independent Set,
that this problem is not approximable to within a factor O(m1−ε) or O(n1/2−ε),
unless ZPP = NP. (Recall that m is the number of tariff arcs and n is the
number of clients.) On the positive side, we can show that the problem admits
an n-approximation.
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We briefly discuss some polynomially solvable special cases of the river tar-
ification problem in Section 7. Finally, we empirically analyze the quality of
uniform tarification policies in Section 8, using instances from France Télécom.

2 Applications

As an illustration, consider transportation networks that resemble the situation
of a town that is divided by a river. Different traversal possibilities exist, and
some of these are to be priced by an operator. These traversal possibilities are
the tariff arcs in the network. Customers want to route certain commodities from
one side of the river to the other.

Such a network topology may be assumed (after a simple transformation
described below) in telecommunication networks where we know a priori that
the path of each client takes at most one tariff arc. This occurs, e.g., in the
international interconnections market, where several operators offer connections
to a particular country. If we focus on the market for this particular country, we
can assume that it is not profitable for any client to enter the country twice.

For another motivation, consider the internet. Whenever an autonomous sys-
tem (represented by some subnetwork) has to transit data, the data may enter
and exit the autonomous system at different points. Clients have to pay a price
for transmitting data through the autonomous system, yielding revenue for its
owner. The data flow can be modelled such that once it is routed through the
autonomous system, it does not pass a second time, thereby creating an instance
of the river tarification problem.

Finally, in point-to-point markets, a telecommunications operator is offering
bandwidth capacity between two points in different qualities of service (QoS). In
that setting, it is often the case that information is available concerning the prices
customers are willing to pay for different levels of QoS. That pricing problem
can be modelled easily as a river tarification problem, too.

3 Model

An instance of the general tarification problem is a directed graph G = (N,A),
where the arc set A is partitioned into a set of m tariff arcs T ⊆ A and a set of
fixed cost arcs F = A \ T . There are n clients (or commodities) k ∈ {1, . . . , n},
where each client k has a demand dk that has to be routed from source node
sk to target node tk. Because there is no congestion involved, we may assume
without loss of generality that all demand values dk are scaled to be integral.
We define for a commodity k the set of all possible paths from sk to tk by Pk.
The tariff on a tariff arc a ∈ T is denoted by τa, and the vector of all tariffs is
given by τ = (τa)a∈T . The cost of a fixed cost arc a ∈ F is denoted by ca.

The clients route their demands from source to destination according to a
path with minimal total cost, where the total cost of a path is defined as the
sum of the tariffs and fixed costs on the arcs of the path. Whenever the client
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has a choice among multiple paths with the same total cost but with different
revenues for the operator, we assume that the client takes the path that is most
profitable to the operator. This can always be achieved with arbitrary precision
by reducing all tariffs by some small value ε. We assume that an {sk, tk}-path
exists that consists only of fixed cost arcs for every client k ∈ {1, . . . , n}, since
the problem is otherwise unbounded.

Without going into further details, we mention that this tarification problem
is a classical Stackelberg Game that can be modelled as (linear-linear) bilevel
program [9, 1]. It follows from Jeroslow [7] that (linear-linear) bilevel programs
are NP-hard in general. For annotated bibliographies on bilevel programming,
see Vicente and Calamai [13] or Dempe [4].

We next describe a simple transformation of the given graph G that allows
us to restrict to very specific graphs (although probably losing certain graph
properties, such as planarity). When replacing shortest paths using only fixed
cost arcs by direct arcs, and possibly introducing some dummy arcs with zero
or infinite cost, one obtains a shortest path graph model (SPGM) as defined by
Bouhtou et al. [1]. In that model, all tariff arcs are disjoint, and there exists an
arc from any source node sk to the tail node of any tariff arc, and from the head
node of any tariff arc to any target node tk. Moreover, there exists a fixed cost
arc (sk, tk) for all k = 1, . . . , n, and the cost ck is the highest acceptable price
for client k.

The additional assumption in the problem considered in this paper (to which
we refer as the river tarification problem) is the following: Independent of the
tariffs, any client routes his demand only on a path that includes at most one
tariff arc. In the shortest graph path model, that is equivalent to the deletion of
any backward-arc that might exist between the head nodes of tariff arcs back to
tail nodes of other tariff arcs. Figure 1 shows the shortest path graph model of an
instance of the river tarification problem with three tariff arcs and two clients.
The tariff arcs ai, i ∈ {1, 2, 3} are given by the dashed arcs in the network.
We may also assume without loss of generality that all fixed cost arcs incident
with the target nodes tk have zero cost (by adding their costs to the fixed cost
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Fig. 1. River tarification problem with n = 2 and m = 3
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arcs incident with sk). Notice that the only difference to the general tarification
problem described above is the non-existence of backward arcs.

The essential parameters that define an instance of a (river) tarification prob-
lem are therefore the number of tariff arcsm, the number of clients n, the demand
values dk, k ∈ {1, . . . , n}, and the costs ca of the fixed cost arcs a ∈ F . Due to
the fact that any path taken by a client involves exactly one fixed cost arc with
non-zero cost, we may assume without loss of generality that the costs ca of the
fixed cost arcs a ∈ F are integral. Moreover, due to the integrality of the costs of
the fixed cost arcs, it is immediate that any reasonable solution will adopt only
tariffs which are integral, too. Notice that this might not hold for the general
tarification problem, where a path chosen by a client can consist of more than
one tariff arc.

4 Complexity

Roch et al. [10] show that the general tarification problem is NP-hard in the
strong sense, even when restricted to a single client, using a reduction from the
NP-complete problem 3-Sat [5]. Their reduction works for tarification problems
where paths are allowed to use (and indeed, must use) several tariff arcs. We
show that the tarification problem with multiple clients, but restricted to at
most one tariff arc per path, is NP-hard in the strong sense, too.

We also use a reduction from 3-Sat. Therefore, consider a boolean function
f : {0, 1}n → {0, 1} on n variables x1, . . . , xn, in conjunctive normal form. Such
a function f is the conjunction of m clauses Ck,

f =
m∧

k=1

Ck , (1)

each clause Ck being the disjunction of three literals, Ck = (�k1 ∨ �k2 ∨ �k3). Any
literal �kj represents either a variable xi, or its negation x̄i, i ∈ {1, . . . , n}. Then
f is satisfiable if there exists a truth assignment x1,. . . , xn such that at least
one literal per clause is true.

Any function of the form (1) can be polynomially transformed to an instance
of the river tarification problem as follows. For each variable xi, i ∈ {1, . . . , n},
we construct a constant-size subnetwork as shown in Figure 2. Each of these
subnetworks has three clients with unit demand, with origin-destination pairs
{sij , tij}, j ∈ {1, 2, 3}. Moreover, each subnetwork has two tariff arcs, ai repre-
senting the truth assignment xi = 1, and āi representing xi = 0, as depicted in
Figure 2.

An upper bound on the cost of routing commodities 1 and 3 is given by fixed
cost arcs (si1, ti1) and (si3, ti3), both with cost 3. For commodity 2, the upper
bound on the cost is given by a fixed cost arc (si2, ti2), with cost 2. The maximal
revenue for each subnetwork is thus given by setting one of the tariffs to 2, and
the other to 3, yielding a revenue of 2 · 2 + 3 = 7. In all other cases, the revenue
is not more than 6.
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Fig. 2. Subnetwork for variable xi, i ∈ {1, . . . , n}

Next, for each clause Ck, k ∈ {1, . . . ,m}, we create a clause-commodity k
with origin destination pairs {sk, tk}, with unit demand. Whenever a variable xi

(x̄i, respectively) appears as one of clause Ck’s literals, we connect sk to si1 (si3,
respectively), and ti1 (ti3, respectively) to tk, using arcs of zero cost. In addition,
we introduce a fixed cost arc (sk, tk) with cost 2, defining an upper bound of 2
for the cost of routing clause-commodity k. The so-defined instance of the river
tarification problem has 2n tariff arcs, 3n + m commodities (or clients), and
7m+ 11n fixed cost arcs, hence the transformation is indeed polynomial.

Theorem 1. The river tarification problem is strongly NP-hard.

Proof. Consider the polynomial transformation defined previously. It is now
straightforward to show that a satisfying truth assignment for f exists if and
only if the revenue for the river tarification problem is equal to 2m+ 7n. 	


The reduction used for the proof of Theorem 1 shows that the river tarification
problem remains NP-hard even for unit demands, a fixed number of tariff values
and when the operator is forced to use tariffs such that he serves (a given subset
of) all clients.

5 The Quality of Uniform Tarification Policies

The uniform tarification problem (UTP) is the same as the general tarification
problem, with the additional restriction that all tariffs are required to be iden-
tical. As shown by van Hoesel et al. [12], the uniform tarification problem can
be solved in polynomial time, even in the general setting where clients may use
paths with several tariff arcs. The algorithm described in van Hoesel et al. [12]
uses the parametric shortest path algorithm of Young et al. [14] and Karp and
Orlin [8] to determine the tariff values (i.e. breakpoints) for which the shortest
path tree changes for any client. Calculating the revenue for the operator at
each breakpoint and maintaining the best solution yields the optimal uniform
tarification policy in polynomial time.



146 A. Grigoriev et al.

We next analyze the loss that can be experienced by adopting such a uniform
tarification policy for the river tarification problem. Apart from theoretical in-
terest, the question is motivated by the interest in efficient tarification strategies
in a more general setting with more than one operator. In addition, although
it is quite easy to think of smarter tarification policies, so far all these policies,
except uniform tarification, resisted our attempts of a worst-case analysis.

Therefore, denote by ΠUTP the revenue for an optimal uniform tarification,
and by ΠOPT the revenue for an optimal non-uniform tarification. By definition,
ΠUTP ≤ ΠOPT.

Lemma 1. If an optimal tarification for the river tarification problem with rev-
enue ΠOPT utilizes at most r different tariffs, then for the optimal uniform
tarification, ΠUTP ≥ ΠOPT/r.

The proof of this lemma is indeed trivial. To this end, consider an optimal
non-uniform tarification with tariffs τ1 ≤ · · · ≤ τm, and let Di be the total
demand on an arc ai with tariff τ i, i ∈ {1, . . . ,m}. By D =

∑n
k=1Dk we denote

the total demand served by the operator. Then the revenue created by this
solution is the area under the following ‘staircase’ function f : [0, D] → [0,∞[.

f(x) = τ i for all x with
∑
j<i

Dj ≤ x <
∑
j≤i

Dj , i ∈ {1, . . . ,m}. (2)

Proof (of Lemma 1). Consider any of the rectangles inscribed under the graph
of function f(x), with area Ti := τ i · ∑

j≥iDj . Then it holds that ΠUTP ≥ Ti

for all i ∈ {1, . . . ,m}, since the area of any such rectangle is a lower bound for
the revenue yielded by the optimal uniform tariff ΠUTP. (Notice that this does
not hold for the general tarification problem.) Hence, if only r different tariffs
are utilized, we consider the r (inclusion-)maximal rectangles under function f ,
say Ti1 , . . . , Tir

, and get r ·ΠUTP ≥ ∑r
j=1 Tij

≥ ΠOPT. 	


Since r ≤ m, Lemma 1 yields the following theorem. Tightness of the result
will be shown below, using Example 1.

Theorem 2. Uniform tarification is an m–approximation for the river tarifica-
tion problem.

We next derive an another bound on the quality of uniform tarification poli-
cies, using a geometric argument.

Theorem 3. Uniform tarification is a (1 + lnD)–approximation for the river
tarification problem, where D ≤ ∑n

k=1 dk is the total demand that is served by
the operator in an optimal solution.

Proof. Indeed, we will even prove a slightly stronger result than claimed in The-
orem 3. Consider an optimal non-uniform tarification, and recall the definition of
the corresponding staircase function f in (2), as well as the inscribed rectangles,
with areas Ti = τ i · ∑

j≥iDj . Let � be the index of the maximal area rectangle



Pricing Network Edges to Cross a River 147

among all Ti, with area T�. Let x� :=
∑

j≥�Dj = T�/τ �. Moreover, denote by
τmax the maximal tariff utilized in that optimal solution. We show

ΠUTP ≥ ΠOPT

1 + ln(Dτmax/T�)
. (3)

Theorem 3 then follows, because T� ≥ τmax by definition of T�. To prove (3), we
define the function

g(x) :=
T�

D − x for x ∈ [0, D) . (4)

We claim that g(x) ≥ f(x) for x ∈ [0, D). To see this, take any x with
∑

j<iDj ≤
x <

∑
j≤iDj , then f(x) = τ i by definition. Now

g(x) =
T�

D − x ≥ T�

D − ∑
j<iDj

=
T�∑

j≥iDj
=

T�

Ti/τ i
≥ τ i = f(x) ,

where the first inequality follows by choice of x, and the last follows by choice
of � as the index of the largest rectangle.

Hence, the area under the staircase function, which equals ΠOPT, can be
upper bounded in terms of the area defined by the function g(x), as depicted
in Figure 3. To compute this area, we partition it into three parts, namely the
rectangle T� itself, the area under g(x) on the domain x ∈ [0, D − x�], as well
as the area to the right of g(x) on the domain τ ∈ [τ �, τmax]. The latter is the
integral of the function D − g−1(τ) = T�/τ on the domain [τ �, τmax]. We thus
obtain the following.

xl

���
���
���

���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���

���
���
���

Tl

τ
g(x)

τ

d

τmax

l

D

Fig. 3. Illustration for the proof of Theorem 3
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ΠOPT ≤ T� +
∫ D−x�

0

T�

D − x dx+
∫ τmax

τ �

T�

τ
dτ

= T�[1 + lnD + ln τmax − ln τ � − lnx�]
= T� [1 + ln(Dτmax/T�)] ,

and since T� ≤ ΠUTP, claim (3) follows. 	

Notice that claim (3) confirms the following geometric intuition: The closer

the staircase function f(x) is to the straight line x �→ (τmax/D) · x, the closer
is T� to Dτmax/4, which yields an approximation ratio of (1 + ln 4) ≈ 2.4 for
uniform tarification. Geometric intuition indeed suggests a ratio of roughly 2,
the additional 0.4 being caused be the difference between the functions g(x)
and f(x). In Section 8, we compare the quality of uniform versus non-uniform
tarification, based on instances obtained from France Télécom.

In the case of unit demands of the clients, that is, if dk = 1 for all clients
k = 1, . . . , n, we obtain the following.

Corollary 1. Whenever clients have unit demands, uniform tarification is a
(1 + lnn)–approximation for the river tarification problem.

Finally, let us show tightness of the bounds in Theorems 2 and 3.

Example 1. Given n=m commodities and m tariff arcs. Every commodity is
operating its own subnetwork with one tariff arc, thus the entire network consists
of m disjoint subnetworks and each of them contains one commodity and one
tariff arc. Fix b > 1 and let the demand in subnetwork k be given by dk =
bk−bk−1, k ∈ {1, . . . ,m}. This way, the total demand D equals bm−1. Moreover,
the maximal revenue for subnetwork k is limited by a fixed cost arc (sk, tk), with
cost ck = b2m−k. Hence, the maximal tariff τmax equals b2m−1. 	


In the optimal solution, the tariff for each subnetwork k is set to its maximal
value, b2m−k. Each subnetwork therefore contributes a revenue of b2m − b2m−1,
andΠOPT = m(b2m−b2m−1). The optimal uniform tarification consists in setting
the tariff on all tariff arcs to bm. This way, every unit of demand creates a profit of
bm, yielding a total revenue of b2m−bm. Other (reasonable) uniform tariffs would
be values b2m−k, k ∈ {1, . . . ,m− 1}. This yields a total revenue of b2m − b2m−k,
which is less. Therefore, we obtain

ΠUTP/ΠOPT =
b2m − bm

m(b2m − b2m−1)
≤ b2m

m(b2m − b2m−1)
=

1
m

· b

b− 1
.

Now, observe that in the optimal solutionm different tariffs are utilized. Lemma 1
(Theorem 2, respectively) suggests that uniform tarification provides an m–
approximation. Example 1 proves that this is best possible, since b can be chosen
arbitrarily large.

Moreover, Theorem 3 suggests that uniform tarification is a (1 + lnD)–
approximation. In Example 1, we have D = (bm − 1) and thus (1 + lnD) =
1 + ln(bm − 1) ≤ 1 +m ln b. Hence, Theorem 3 yields that uniform tarification is
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a O(m)–approximation on this example. The same Example 1 shows that O(m)
is indeed best possible. Summarized, we thus get the following.

Theorem 4. For uniform tarification, the performance bound of Theorem 2 is
best possible, and the performance bound of Theorem 3 is best possible up to a
constant factor.

6 All-Service River Tarification Problem

In this section, we consider the following variation of the river tarification prob-
lem. The operator must set tariffs in order to capture the demand of all clients,
that is, tariffs must be such that no client k is forced to use the arc (sk, tk). We
refer to this problem as the all-service river tarification problem. NP-hardness
of this problem follows by our previous reduction presented in Section 4.

It follows from trivial examples that the maximal revenue for the all-service
problem can be an arbitrary factor away from the maximal revenue without the
all-service constraint. Hence, we have an arbitrarily high ‘cost of regulation’.
In addition, we can show that the maximal revenue for the all-service problem
cannot be approximated well.

Theorem 5. For any ε > 0, the existence of a polynomial time approximation
algorithm for the all-service river tarification problem with with n clients and m
tariff arcs with worst case ratio O(m1−ε) or O(n1/2−ε) implies ZPP = NP.

Proof. The proof uses an approximation preserving reduction from Indepen-
dent Set [5] to the all-service RTP. So assume we are given a graph G = (V,E),
and the problem is to find a maximum cardinality subset V ′ ⊆ V of vertices such
that no two vertices in V ′ are connected by an edge. The transformation works
as follows. For every vertex v ∈ V we introduce a client with origin-destination
pair {sv, tv} and demand dv = |E|, and a corresponding tariff arc av. We connect
the source sv to the tail of the tariff arc av, and the head of av to the destina-
tion tv, using zero cost fixed cost arcs. Moreover, there is a fixed cost arc (sv, tv)
with cost (|V | + 1) for all vertices v ∈ V . For every edge e ∈ E we introduce a
client with origin-destination pair {se, te} and unit demand. The upper bound
on the cost of routing this demand is given by the fixed cost arc (se, te) with
cost 1. For all edges e ∈ E and all vertices v ∈ V with v ∈ e, we furthermore
introduce fixed cost arcs (se, tail(av)) and (head(av), te), with zero cost. This
transformation results in an instance of the all-service RTP with |V | tariff arcs,
and |V | + |E| clients. Figure 4 gives an example of such a transformation for a
graph G = (V,E) with 3 nodes and 2 edges.

We claim that G has an independent set of cardinality at least k if and only
if there exists a tariff policy for the all-service RTP with a total revenue of
|V ||E|(k + 1) + |E|.

First, assume that G has an independent set V ′ of cardinality k. For all
v ∈ V ′, set the tariff on the corresponding tariff arc av to |V | + 1, and all other
tariffs to 1. By the definition of an independent set, for any edge e = (v, u) ∈ E
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Fig. 4. Reduction of Independent Set to all-service RTP

at least one of the vertices, v or u, is not in V ′. Therefore, the tariff of at least one
of the tariff arcs, av or au is 1. All clients corresponding to an edge e can thus be
served, using one of the tariff arcs av or au. The clients (sv, tv) corresponding to
the vertices v ∈ V are also served, since the upper bound of |V |+1 is not exceeded
with the so-defined tariffs. Hence, all demands are served. The revenue consists
of |E| from all clients corresponding to the edges E of G, |E|(|V | + 1)k from the
clients corresponding to the independent set V ′, and |E|(|V |−k) from the clients
corresponding to V \ V ′. That yields a total revenue of |E||V |(k + 1) + |E|.

Conversely, assume that there exists a set of tariffs that captures all demands,
such that the revenue is |E||V |(k+ 1) + |E|. We will show that this implies that
the graph G has an independent set of cardinality at least k. Since all demands
are captured at this tarification strategy, for any edge e = (v, u) ∈ E, the
tariff on at least one of the arcs, av or au, is 1. Consider the set of vertices
V ′ := {v ∈ V : tav > 1}. By definition, no pair of nodes v, u ∈ V ′ is connected
by an edge. Hence, V ′ is an independent set in G. Let k′ := |V ′|. The revenue
is equal to |E| + |E|(|V | − k′) + |E|(|V | + 1)k′ = |E||V |(k′ + 1) + |E|, which by
assumption is at least as large as |E||V |(k + 1) + |E|. This implies that k′ ≥ k
and thus that V ′ is an independent set in G of cardinality k′ ≥ k.

Now, let us assume that we have an α-approximation algorithm A for the
all-service RTP, with α ≥ 1. Consider any instance G = (V,E) of Independent
Set, and the all-service RTP resulting from the above reduction. We can assume
that both the optimal solution and the solution produced by A only utilize tariff
values 1 or |V |+1, because any tariff greater than 1 and not equal to |V |+1 can
be turned into |V | + 1 with a revenue gain. So ΠOPT = |E||V |(k + 1) + |E| for
some k, and ΠA = |E||V |(k′ + 1) + |E| for some k′. The first part of the proof
yields that the maximal independent set of G has size k, and algorithm A can
be used to find an independent set of size at least k′. Moreover,

1
α

≤ |E||V |(k′ + 1) + |E|
|E||V |(k + 1) + |E| =

1 + 1
|V | + k′

1 + 1
|V | + k

≤ 2 + k′

1 + k
,
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hence k′ ≥ (k + 1)/α − 2. In other words, we have an O(α)–approximation
algorithm for the Independent Set problem.

It is now well known from work of H̊astad [6] that the Independent Set
problem cannot have a polynomial time approximation algorithm with worst case
guarantee O(|V |1/2−ε) unless P = NP, and that it cannot have a polynomial time
approximation algorithm with worst case guarantee O(|V |1−ε) unless ZPP = NP.
Since the number of tariff arcsm in our transformation equals |V |, the first claim
of the theorem follows. Since the number of clients n in our transformation equals
|V | + |E| ∈ O(|V |2), the second claim follows. 	


On the positive side, we can show the following.

Theorem 6. There exists an n-approximation algorithm for the all-service river
tarification problem.

The proof works by enumeration over all m·n possibilities for a maximum
revenue client using a specific arc. Given that arc-client pair, we can find a
corresponding optimal tariff for that arc in polynomial time using binary search,
in each step solving a system of linear inequalities. We skip the details due to
space limitations.

7 Polynomially Solvable Special Cases

Several polynomially solvable special cases of the (general) tarification problem
are discussed by Labbé et al. [9] and van Hoesel et al. [12]. Clearly, these results
hold for the problem considered in this paper, too.

In addition, the river tarification problem is also polynomially solvable if the
number of clients n is bounded from above by a constant. In that case, the
number of assignments of clients to tariff arcs is bounded by mn which is a
polynomial for fixed n. Consider therefore the following formulation, where we
use notation as given next. The path taken by each client in the network is
denoted by p∗

k ∈ Pk, and Pk represents the set of all possible paths taken by a
client k ∈ K. The revenue associated with a path p ∈ Pk induced by a client k
with demand dk is defined by πp(τ , dk) = dk · τa, where a is the (unique) tariff
arc on path p. The fixed cost of a path p is given by cp(dk) = dk

∑
a∈F∩p ca.

Then lp(τ , dk) := cp(dk) + πp(τ , dk) is the total cost of the path p ∈ Pk for a
client k.

max
τ

∑
k∈K

πp∗
k
(τ , dk)

s.t. lp(τ , dk) ≥ lp∗
k
(τ , dk) ∀k ∈ K,∀p ∈ Pk

τa ≥ 0 ∀a ∈ T
(5)

Since for each client, there are at most m + 1 paths in the network, |Pk| is
bounded by m+ 1. Hence, the number of constraints is polynomial in the input
data. Therefore, if we solve mn instances of (5), we can retrieve the optimal
solution in polynomial time.
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8 Numerical Results

As stated previously, whenever the function that describes the total revenue in an
optimal non-uniform solution, i.e. the staircase function defined in (2), is close
to a straight line, geometric intuition suggests a worst-case ratio for uniform
tarification of approximately 2. The worst case Example 1 crucially hinges on a
(staircase) function that approximates a hyperbola. Thus, it can be conjectured
that the empirical performance of uniform tarification policies outperforms the
theoretical bounds we have found. This is indeed confirmed in the following
numerical experiments, displayed in Table 1. The study is based on instances
obtained from France Télécom.

Table 1. Quality of Uniform Tarification on France Télécom instances

Instance |N | |A| m n ΠOPT ΠUTP %

RTN1 29 94 7 15 841 624 74%
RTN2 29 98 6 21 4099 3496 85%
RTN3 59 206 10 13 1118 880 79%
RTN4 59 204 10 20 2217 1512 68%
RTN5 49 120 9 21 74948 55968 74%
RTN6 33 116 15 12 28166 20328 72%

These instances represent telecommunication networks for the international
interconnections market, as described in Section 2. We compare the optimal so-
lutions for uniform tariffs (ΠUTP ) and non-uniform tariffs (ΠOPT ). The optimal
non-uniform solution is calculated using the model and mixed integer program-
ming formulation described in Bouhtou et al. [1]. The value ofΠUTP is calculated
using the same formulation, requiring that all tariffs be equal. As such, we do
not compare the actual computation times, but are just interested in effective-
ness of the optimal uniform tarification policies. Table 1 gives a brief description
of each network, stating the number of nodes, arcs, tariff arcs and clients. The
optimal non-uniform and uniform solution values are displayed in the columns
ΠOPT and ΠUTP . The final column is the approximation ratio.
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