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This article formalises the semantics of Generalised Stochastic Petri Nets (GSPNs) in
terms of Markov Automata (MAs). Additionally, we provide a translation of GSPNs to
specifications in the MAPA language. Since both are symbolic representations, this trans-
lation is fast and the resulting specifications are comparable smaller in size to the GSPN
specifications. As MAPA also has semantics in terms of MAs, we can first translate a GSPN
model to a MAPA specification and then generate the underlying MA. We prove that this
MA corresponds to the MA representing the semantics of the original GSPN.

Although most GSPN representations require all immediate transitions to be accompanied
by a weight, we are more liberal and consider the weights optional. Hence, this allows GSPN
models in which several unweighted immediate transitions may fire from the same state. This
introduces non-determinism, and hence motivates the choice to lift the semantics from MAs
to CTMCs.

1 Preliminaries

1.1 Markov Automata

An MA is a transition system in which the set of transitions is partitioned into interactive
transitions (which are equivalent to the transitions of a PA) and Markovian transitions (which
are equivalent to the transitions of an IMC). The following definition formalises this, and
provides notations for MAs. We assume a countable universe Act of actions, with τ ∈ Act
the invisible internal action.

Definition 1 (MAs). A Markov automaton (MA) is a tuple M = 〈S, s0, A, ↪−→, 〉, where

• S is a countable set of states

• s0 ∈ S is the initial state;

• A ⊆ Act is a countable set of actions;

• ↪−→ ⊆ S ×A× Distr(S) is the interactive transition relation;

•  ⊆ S × R>0 × S is the Markovian transition relation.

If (s, a, µ) ∈ ↪−→, we write s
α
↪−→ µ and say that the action a can be executed from state s,

after which the probability to go to s′ ∈ S is µ(s′). If (s, λ, s′) ∈ , we write s λ s′ and say
that s moves to s′ with rate λ.

1.2 Generalised Stochastic Petri Nets

GSPNs are among the most general variants of Petri Nets. Like other types of Petri Nets,
they consist of places and transitions. The places can contain tokens, and the transitions
move tokens between places. Each state of a GSPN is therefore given as a marking, i.e., a
function that assigns a natural number to each place (the number of tokens is contains).

A marking m can evolve into another marking m′ if there is a transition to make this
happen. This can happen either immediately (by an immediate transition) or delayed (by
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a rate transition). The immediate transitions of a GSPN are assigned a priority, as well as
a weight (although both are optional). If in a given state several immediate transitions are
enabled, only the ones with the highest priority may fire. Since rate transitions are defined to
have a priority of 0, and immediate transitions have to be assigned a priority higher than zero,
this implies that immediate transition always take precedence over rate transitions (which is
often called the maximal progress property).

If several immediate transitions with the same priority are enabled at the same time, any
one of them can be chosen non-deterministically. However, if some of them have a weight
assigned, those are merged into one transition that has a probabilistic outcome (based on
the weights).

Definition 2 (GSPNs). A GSPN is a 10-tuple G = (P,m0, IMT ,PRI ,W,RT , R, I, F,MU ),
where

• P is a finite set of places;

• m0 : P → N is the initial marking

• IMT is a finite set of immediate transitions;

• PRI : IMT → N>0 is the priority function;

• W : IMT → R ∪ {⊥} is the weight function;

• RT is a finite set of rate transitions;

• R : RT → R>0 is the rate function

• I : P × T is a finite set of inhibitor arcs

• F : (P × T ) ∪ (T × P ) is a finite set of regular arcs

• MU : F × N>0 is the multiplicity function

where we use T = IMT ∪ RT to denote all transitions.

The set of all markings of a GSPN is defined as M = {m : P → N}. For each immediate
transition t, PRI (t) provides its priority andW (t) its weight. We useW (i) = ⊥ to denote that
t does not have a weight assigned. For each rate transition t, R(t) provides its Markovian rate.

To give the precise semantics of G in terms of an MA, we first introduce some additional
notation to deal with arcs and explain when transitions can be fired.

Definition 3 (Notations for arcs). Let G = (P,M0, IMT ,PRI ,W,RT , R, I, F,MU ) be a
GSPN. Then, given an arc a ∈ F ∪ I, we write src(a) for its first element and target(a)
for its second. Given a transition t ∈ T , we denote by in(t) = {a ∈ F | target(a) = t} the
set of all its incoming regular arcs. Similarly, we define out(t) = {a ∈ F | src(a) = t} and
inhib(t) = {a ∈ I | target(t) = a}.

Note that for some arcs src(a) ∈ P and target(a) ∈ T , while for others src(a) ∈ T and
target(a) ∈ P .

A transition can fire if all places associated with its incoming arcs have enough tokens
(as indicated by the multiplicity function) and all places associated with its inhibitor arcs
are empty. However, in the presence of priorities some transitions that in principle could fire
are disabled nevertheless. If several transitions are enabled, only the one(s) with the highest
priorities are actually enabled.

Definition 4 (Enabling). Given a GSPN G = (P,M0, IMT ,PRI ,W,RT , R, I, F,MU ) and
a markings m ∈M, the set of transitions that are basically enabled from m is given by

enbasic(m) = {t ∈ T | ∀a ∈ in(t) .m(src(a)) ≥ MU (a) ∧ ∀a ∈ inhib(t) .m(src(a)) = 0}.

The set of transitions that are actually enabled from m is given by

en(m) = {t ∈ enbasic(m) | ∀t′ ∈ enbasic(m) .PRI (t) ≥ PRI (t′)}
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If a transition is enabled, it can fire. In that case, the required tokens from the places
associated with its incoming arcs are removed, and the places associated with its outgoing
arcs gain additional tokens (as indicated by the multiplicity function). Hence, the transition
moves the GSPN from one marking to another.

Definition 5 (Firings). Given a GSPN G = (P,M0, IMT ,PRI ,W,RT , R, I, F,MU ) and two

markings m,m′ ∈ M, there is a firing from m to m′ by transition t ∈ T , denoted m −t→ m′,
if t ∈ en(m) and

∀a ∈ in(t) .m′(src(a)) = m(src(a))−MU (a) ∧
∀a ∈ out(t) .m′(target(a)) = m(target(a)) + MU (a)

We define −t→∗ as the reflexive and transitive closure of the relation −t→.

1.3 Markov Automata Process Algebra

Markov Automata Process Algebra (MAPA) is a process-algebraic specification language in
which all conditions, non-deterministic and probabilistic choices, and Markovian delays may
depend on data parameters. It requires an external mechanism for the evaluation of expres-
sions (e.g., equational logic, or a fixed data language), able to handle at least boolean and
real-valued expressions. Here, we use an intuitive data language, containing basic arithmetic
and boolean operators. We generally refer to data types with upper-case letters D,E, . . . ,
and to variables with lower-case letters u, v, . . . .

Definition 6 (Process terms). A process term in MAPA is any term that can be generated
by the following grammar:

p ::= Y (t) | c⇒ p | p+ p |
∑

x:D p | a(t)
∑
•

x:D f : p | (λ) · p

Here, Y is a process name, t a vector of expressions, c a boolean expression, x a vector of
variables ranging over a (possibly infinite) type D, a ∈ Act a (parameterised) atomic action,
f a real-valued expression yielding values in [0, 1], and λ an expression yielding positive real
numbers (rates). We write p = p′ for syntactically identical process terms. Note that, if
|x| > 1, D is a Cartesian product, as for instance in

∑
(m,i):{m1,m2}×{1,2,3} send(m, i) . . ..

Given an expression t, a process terms p and two vectors x = (x1, . . . , xn), d = (d1, . . . , dn),
we use t[x := d] to denote the result of substituting every xi in t by di, and p[x := d] for the
result of applying this to every expression in p.

Definition 7 (Specifications). A MAPA specification is given by a tuple M = ({Xi(xi : Di) =
pi}, Xj(t)) consisting of a set of uniquely-named processes Xi, each defined by a process equa-
tion Xi(xi : Di) = pi, and an initial process Xj(t). In a process equation, xi is a vector of
process variables with type Di, and pi (the right-hand side) is a process term specifying the
behaviour of Xi. A variable v in an expression in a right-hand side pi is bound if it is an
element of xi or it occurs within a construct

∑
x:D or

∑
•

x:D such that v is an element of x.
Variables that are not bound are said to be free.

In a process term, Y (t) denotes process instantiation, where t instantiates Y ’s process
variables (allowing recursion). The term c ⇒ p behaves as p if the condition c holds, and
cannot do anything otherwise. The + operator denotes nondeterministic choice, and

∑
x:D p

a (possibly infinite) nondeterministic choice over data type D. The term a(t)
∑
• x:D f : p

performs the action a(t) and then does a probabilistic choice over D. It uses the value
f [x := d] as the probability of choosing each d ∈ D. Finally, (λ) · p can behave as p after a
delay, determined by a negative exponential distribution with rate λ.

We generally refer to process terms with lower-case letters p, q, r, and to processes with
capitals X,Y, Z. Also, we will often write X(x1 : D1, . . . , xn : Dn) for X((x1, . . . , xn) :
(D1× · · · ×Dn)). As syntactic sugar, we write a(t) · p for the action a(t) that goes to p with
probability 1.
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2 GSPN semantics as MA

We are now ready to define the semantics of a GSPN in terms of an MA. As stated earlier,
transitions without a weight can fire non-deterministically. The transitions with weights are
merged together in a single τ transition. The next state of this transition is probabilistically
distributed according to the weights of the constituent transitions.

Definition 8 (GSPN semantics). Given a GSPN G = (P,M0, IMT ,PRI ,W,RT , R, I, F,MU ),
its semantics is given by the MA M = (S,m0, A, ↪−→, ), where

• S = {m′ ∈M | m0 −t→∗ m′}

• A = {τ}

• ↪−→ is such that, for every m,m′ ∈ S, µ ∈ Distr(S),

m
τ
↪−→ 1m′ ⇐⇒ ∃t ∈ IMT .W (t) = ⊥ ∧ m −t→ m′

m
τ
↪−→ µ ⇐⇒ ∃t ∈ IMT .W (t) > 0 ∧

∀m′ ∈ S . µ(m′) =

∑
{|W (t) | t ∈ IMT ∧W (t) > 0 ∧ m −t→ m′|}∑

{|W (t) | t ∈ IMT ∧W (t) > 0 ∧ ∃m′′ ∈ S .m −t→ m′′|}

•  is such that, for every m,m′ ∈ S,

m λ m′ ⇐⇒ λ =
∑
{|R(t) | t ∈ RT ∧m −t→ m′|} > 0

Note that the rate from a marking m to a marking m′ is determined by the sum of all enabled
rate transitions from m to m′.

3 Translation from GSPN to MAPA

We are now ready to specify a GSPN in terms of MAPA. The specification will consist of one
process which will have the transitions as process terms. This process will have a variable
for each place. A valuation of these variables corresponds to a marking of the GSPN. The
initial marking is thus the initial state of the process.

Definition 9 (GSPN semantics). Given a GSPN G = (P,M0, IMT ,PRI ,W,RT , R, I, F,MU ),
with P = p0, p1, . . . , pn. Then the corresponding MAPA specification is a process X(p1 :
N, p2 : N, . . . , pn : N), with initial state X(M0(p1),M0(p2), . . . ,M0(pn)). The behaviour of X
is given by a set of summands based on the transitions of G. More precisely, it is the smallest
process such that:

• For each rate transition t ∈ RT , X has a summand

crt ⇒ R(t) ·X(nt)

where crt is the conjunction of all terms {src(a) ≥ MU (a) | a ∈ in(t)} ∪ {src(a) = 0 |
a ∈ inhib(t)}. The next state nt consists of all terms in {src(a) = src(a) −MU (a) |
a ∈ in(t)} ∪ {target(a) = target(a) + MU (a) | a ∈ out(t)}.

• For each immediate transition t ∈ IMT with W (t) = ⊥, X has a summand

cit ⇒ τ ·X(nt)

where cit is the conjunction of crt (as defined above) and all terms in {¬(crt′) | t′ ∈
IMT∧PRI (t′) > PRI (t)}, and nt is as defined above. This way, unweighted transitions
are only enabled if none of the transitions with a higher priority are also enabled. Note
that this is not needed for rate transitions, due to the maximal progress property.
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• Let tp = {t | t ∈ IMT ∧W (t) > 0 ∧ PRI (t) = p} be the set of weighted transition with
priority p. For each priority p such that |tp| > 0, X has a summand

csp ⇒ τ ·
∑
•
t:tp

if cit then W (t) else 0

totalWeight
: X(nt)

where nt is as defined above, and csp is the disjunction of all terms in {cit | t ∈ tp},
with cit also as defined above. Note that each transition only has a nonzero probability
if it is enabled. Hence, the total weight is also defined conditionally, by

totalWeight =
∑
t∈tp

(if cit then W (t) else 0)
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