
Actual Test Coverage

Mark Timmer, University of Twente

September 9, 2008

Testing is inherently incomplete; no test suite will ever be able to test all possible
usage scenarios of a system. Therefore, in the past decades many coverage measures
have been developed. These measures denote the portion of a system that is tested,
that way providing a quality criterion for test suites.

Known examples of coverage measures in white box testing are statement coverage
and path coverage. In black box testing much research has been devoted to state and
transition coverage using finite state machines. Potential drawbacks of finite state
machines, though, are that they are deterministic and not compositional. This limits
their usability for embedded systems.

Recently a coverage measure that is suitable for embedded systems has been intro-
duced by Brandán Briones, Brinksma and Stoelinga: semantic coverage. It measures
how many erroneous traces might be uncovered by a given test suite. A possible
disadvantage of semantic coverage is that it focusses on which faults can potentially
be detected. In practice, however, a single execution or even several executions of a
test suite will almost never detect all faults that could potentially be detected, due to
non-determinism of the system outputs.

In this talk we introduce a framework on actual test coverage. This measure denotes
the number of faults actually shown present or absent. Our framework provides a
method to evaluate the actual coverage of a given set of test suite executions after
testing has taken place, and also one to predict the actual coverage a certain number
of executions will yield. Both the evaluation afterwards and the prediction in advance
are quite efficient, making it feasible to implement the theory in a tool and use it in a
practical context.

Our methods are behavioural, in the sense that actual coverage is invariant to
syntactic changes that do not affect system behaviour. Moreover, faults can be given
a weight, incorporating their severity.

The framework is based on a probabilistic execution model, describing the prob-
abilistic output behaviour of a system. Using this information, we can estimate how
many faults on average will be detectable during a testing process. Moreover, we use
estimations of the probability with which faults occur in case they are present, enabling
us to calculate the probability of their absence when a given number of executions did
not show their presence.

In conclusion, our framework can evaluate the effect of a test suite after testing
has taken place and predict the effect of a given number of test suite executions. It is
therefore useful for both test evaluation and test selection.

We will illustrate our methods using a small example of a chemical dispenser.


