

Interpreting a successful testing process: risk and actual coverage

Mariëlle Stoelinga, **Mark Timmer** University of Twente

3rd IEEE International Symposium on Theoretical Aspects of Software Engineering

July 31, 2009

2 The WFS Model

- Other Applications
- **5** Limitations and Possibilities

Why testing?

- Software becomes more and more complex
- Research showed that billions can be saved by testing better
- No need for the source code (black-box perspective)

Why testing?

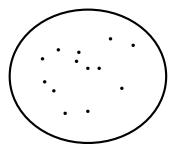
- Software becomes more and more complex
- Research showed that billions can be saved by testing better
- No need for the source code (black-box perspective)

Model-based testing

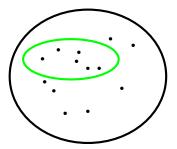
- Precise and formal
- Automatic generation and evaluations of tests
- Repeatable and scientific basis for product testing

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage



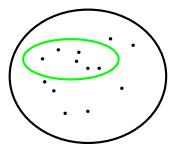
- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage



Introduction – Risk and coverage

Why do we need risk and coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage

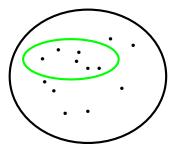


Informal calculation

Introduction – Risk and coverage

Why do we need risk and coverage?

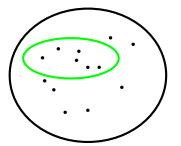
- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage



Informal calculation

Coverage:
$$\frac{6}{13} = 46\%$$

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage



Informal calculation

Coverage:
$$\frac{6}{13} = 46\%$$

Risk:
$$7 \cdot 0.1 \cdot \$10 = \$7$$

Existing coverage measures

• Statement coverage

• State/transition coverage

Introduction – Existing approaches

Existing coverage measures

• Statement coverage

• State/transition coverage

Limitations:

- all faults are considered of equal severity
- likely locations for fault occurrence are not taken into account
- syntactic point of view

Introduction – Existing approaches

Existing coverage measures

• Statement coverage

• State/transition coverage

Limitations:

- all faults are considered of equal severity
- likely locations for fault occurrence are not taken into account
- syntactic point of view

Existing risk measuresBachAmland

Interpreting a successful testing process: risk and actual coverage

Introduction – Existing approaches

Existing coverage measures

• Statement coverage

• State/transition coverage

Limitations:

- all faults are considered of equal severity
- likely locations for fault occurrence are not taken into account
- syntactic point of view

Existing risk measures

Bach
 Amland

Limitations:

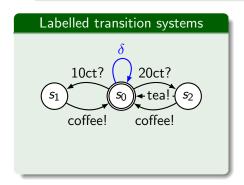
- Informal
- Based on heuristics
- Only identify testing order for components

- System considered as black box
- Semantic point of view
- Fault weights

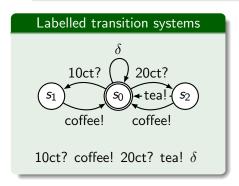
- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems
$10ct? 20ct?$ $5_1 5_0 tea! s_2$ coffee! coffee!

- System considered as black box
- Semantic point of view
- Fault weights

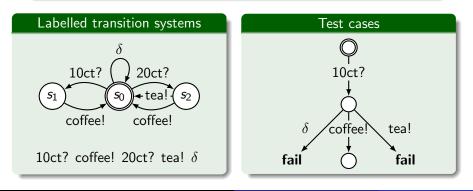


- System considered as black box
- Semantic point of view
- Fault weights



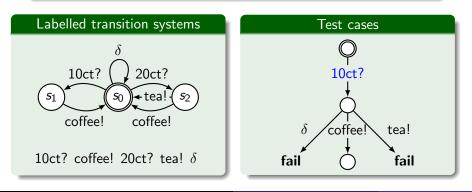
Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

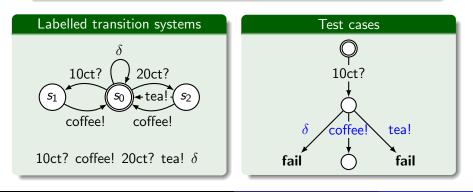


Interpreting a successful testing process: risk and actual coverage

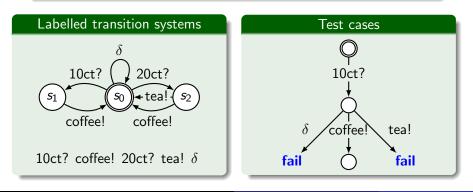
- System considered as black box
- Semantic point of view
- Fault weights



- System considered as black box
- Semantic point of view
- Fault weights



- System considered as black box
- Semantic point of view
- Fault weights



Weighted fault specification

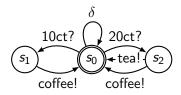
A WFS $^-$ consists of

- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)

Weighted fault specification

A WFS⁻ consists of

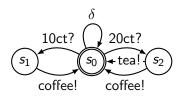
- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)



Weighted fault specification

A WFS⁻ consists of

- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)

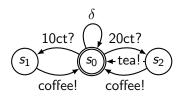


 $p_{
m err}(10ct? \text{ coffee!}) = 0.02$ $p_{
m err}(20ct? \text{ tea!}) = 0.03$

Weighted fault specification

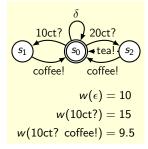
A WFS⁻ consists of

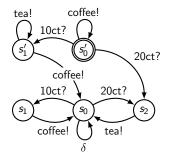
- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)

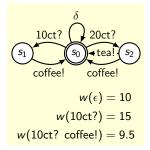


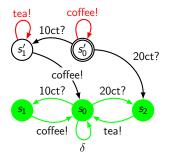
 $p_{
m err}(10ct? \text{ coffee!}) = 0.02$ $p_{
m err}(20ct? \text{ tea!}) = 0.03$

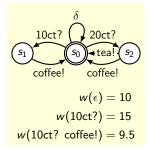
 $w(\epsilon) = 10$ w(10ct?) = 15w(10ct? coffee!) = 9.5

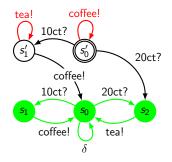


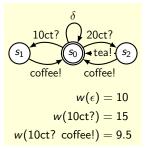




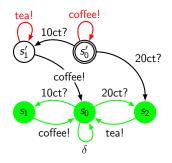


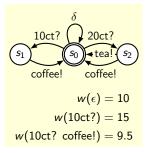






Fault weight: 10 + 15 = 25





Fault weight: 10 + 15 = 25

(We are only interested in whether a fault can occur, not in which one)

Definition

Given a test suite T and a passing execution E, we define

 $risk(T, E) = \mathbb{E}[w(Impl) | observe E]$

i.e., the fault weight still expected to be present after observing E.

Definition

Given a test suite ${\mathcal T}$ and a passing execution ${\mathcal E},$ we define

$$\mathsf{risk}(\mathcal{T}, \mathcal{E}) = \mathbb{E}[w(\mathsf{Impl}) \mid \mathsf{observe} \; \mathcal{E}]$$

i.e., the fault weight still expected to be present after observing E.

Observe:

$$\mathsf{risk}(\langle
angle, \langle
angle) =$$

Definition

Given a test suite T and a passing execution E, we define

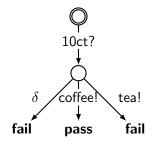
$$\mathsf{risk}(\mathcal{T}, \mathcal{E}) = \mathbb{E}[w(\mathsf{Impl}) \mid \mathsf{observe} \mid \mathcal{E}]$$

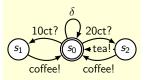
i.e., the fault weight still expected to be present after observing E.

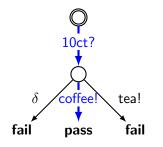
Observe:

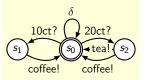
$$\mathsf{risk}(\langle
angle, \langle
angle) = \sum_{\sigma} \mathsf{w}(\sigma) \cdot \mathsf{p}_{\mathrm{err}}(\sigma)$$

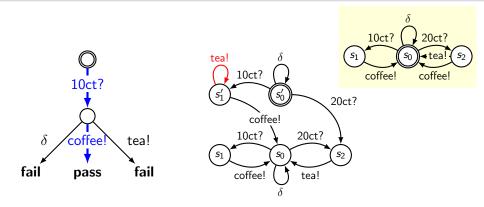
Risk

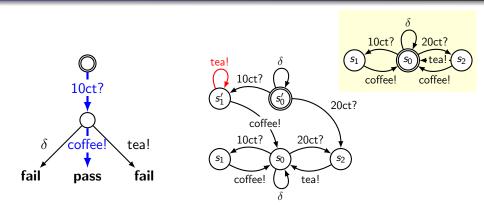




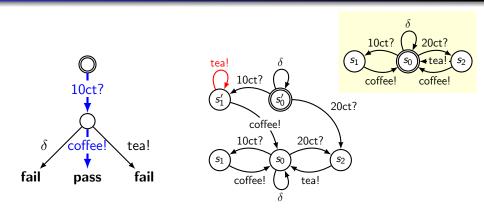




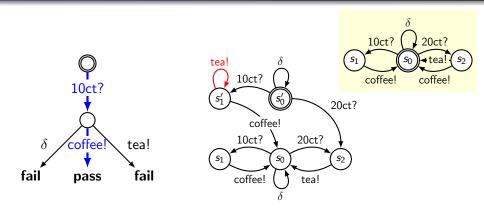




Nondeterministic output behaviour yields difficulties.



Nondeterministic output behaviour yields difficulties.



Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(\langle
angle, \langle
angle) = \sum_{\sigma} w(\sigma) \cdot p_{\mathrm{err}}(\sigma)$$



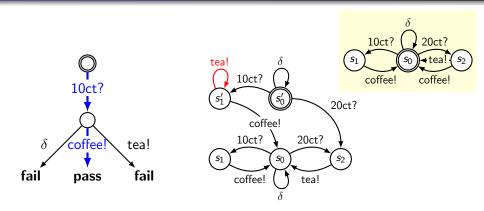
Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(T, \boldsymbol{E}) = \sum_{\sigma \neq 10 \mathsf{ct}?} w(\sigma) \cdot p_{\mathrm{err}}(\sigma) + f(10 \mathsf{ct}?)$$



Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(T, E) = \sum_{\sigma \neq 10 \mathsf{ct}?} w(\sigma) \cdot p_{\mathrm{err}}(\sigma) + f(10\mathsf{ct}?)$$



Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(\mathcal{T}, \mathcal{E}) = \sum_{\sigma \neq 10 \mathsf{ct}?} w(\sigma) \cdot p_{\mathrm{err}}(\sigma) + w(10\mathsf{ct}?) \cdot \mathbb{P}[\mathsf{error after 10ct?} \mid \mathcal{E}]$$

Weighted Fault Specifications (revisited)

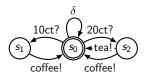
Weighted fault specification

- A WFS consists of
 - An LTS (expected system behaviour)
 - An error function (probability of faults)
 - A weight function (severity of faults)
 - A failure function (probability of failure in case of fault)

Weighted Fault Specifications (revisited)

Weighted fault specification

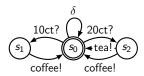
- A WFS consists of
 - An LTS (expected system behaviour)
 - An error function (probability of faults)
 - A weight function (severity of faults)
 - A failure function (probability of failure in case of fault)



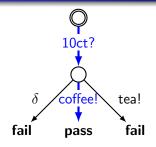
Weighted Fault Specifications (revisited)

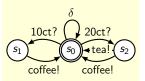
Weighted fault specification

- A WFS consists of
 - An LTS (expected system behaviour)
 - An error function (probability of faults)
 - A weight function (severity of faults)
 - A failure function (probability of failure in case of fault)



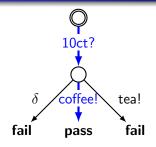
$$p_{\mathrm{fail}}(\epsilon) = 1.0$$
 $p_{\mathrm{fail}}(10 \mathrm{ct?}) = 0.5$

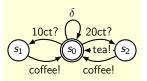




risk(*T*, *E*)
=
$$\sum_{\sigma \neq 10ct?} w(\sigma) \cdot p_{err}(\sigma) + w(10ct?) \cdot \mathbb{P}[\text{error after 10ct?} | E]$$

Interpreting a successful testing process: risk and actual coverage





$$\begin{aligned} \operatorname{risk}(T, E) \\ &= \sum_{\sigma \neq 10 \operatorname{ct?}} w(\sigma) \cdot p_{\operatorname{err}}(\sigma) + w(10 \operatorname{ct?}) \cdot \mathbb{P}[\operatorname{error after 10 \operatorname{ct?}} \mid E] \\ &= \sum_{\sigma \neq 10 \operatorname{ct?}} w(\sigma) \cdot p_{\operatorname{err}}(\sigma) + \\ & w(10 \operatorname{ct?}) \cdot \frac{(1 - p_{\operatorname{fail}}(10 \operatorname{ct?})) \cdot p_{\operatorname{err}}(10 \operatorname{ct?})}{(1 - p_{\operatorname{fail}}(10 \operatorname{ct?})) \cdot p_{\operatorname{err}}(10 \operatorname{ct?}) + (1 - p_{\operatorname{err}}(10 \operatorname{ct?}))} \end{aligned}$$

 $risk(T, E) = \mathbb{E}[w(Impl) | observe E]$

Calculation of risk

$$\mathsf{risk}(\mathcal{T}, \mathcal{E}) = \mathsf{risk}(\langle \rangle, \langle \rangle) - \\\sum_{\sigma \in \mathcal{E}} w(\sigma) \cdot \left(p_{\mathrm{err}}(\sigma) - \frac{(1 - p_{\mathrm{fail}}(\sigma))^{\mathsf{obs}(\sigma, \mathcal{E})} \cdot p_{\mathrm{err}}(\sigma)}{(1 - p_{\mathrm{fail}}(\sigma))^{\mathsf{obs}(\sigma, \mathcal{E})} \cdot p_{\mathrm{err}}(\sigma) + 1 - p_{\mathrm{err}}(\sigma)} \right)$$

with $obs(\sigma, E)$ the number of observations in E after σ .

 $\operatorname{risk}(T, E) = \mathbb{E}[w(\operatorname{Impl}) \mid \operatorname{observe} E]$

Calculation of risk

$$\mathsf{risk}(T, E) = \mathsf{risk}(\langle \rangle, \langle \rangle) - \sum_{\sigma \in E} w(\sigma) \cdot \left(p_{\mathrm{err}}(\sigma) - \frac{(1 - p_{\mathrm{fail}}(\sigma))^{\mathsf{obs}(\sigma, E)} \cdot p_{\mathrm{err}}(\sigma)}{(1 - p_{\mathrm{fail}}(\sigma))^{\mathsf{obs}(\sigma, E)} \cdot p_{\mathrm{err}}(\sigma) + 1 - p_{\mathrm{err}}(\sigma)} \right)$$

with $obs(\sigma, E)$ the number of observations in E after σ .

Although risk $(\langle \rangle, \langle \rangle) = \sum_{\sigma} w(\sigma) \cdot p_{err}(\sigma)$ is an infinite sum, it can be calculated smartly:

- w defined by truncation: the sum is already finite
- w defined by discounting: system of linear equations

Other Applications

Compute test suite quality in advance

- Estimate correct system behaviour
- Compute expected risk after passing the test suite

Compute test suite quality in advance

- Estimate correct system behaviour
- Compute expected risk after passing the test suite

Optimisation

- Find the optimal test suite of a given size
- Apply history-dependent backwards induction (Markov Decision Theory)

Compute test suite quality in advance

- Estimate correct system behaviour
- Compute expected risk after passing the test suite

Optimisation

- Find the optimal test suite of a given size
- Apply history-dependent backwards induction (Markov Decision Theory)

Actual Coverage

- Only consider the traces that were actually tested
- Use error probability reduction as coverage measure
- Methods very similar to risk

Probabilities might be hard to find, but

- We show what can be calculated, and the required ingredients
- We facilitate sensitivity analysis
- To compute numbers, we have to start with numbers...

Probabilities might be hard to find, but

- We show what can be calculated, and the required ingredients
- We facilitate sensitivity analysis
- To compute numbers, we have to start with numbers...

It looks like we need many probabilities and weights, but

- The framework can be applied at higher levels of abstraction
- Compute risk based on error / failure probabilities of modules

Main results

- Formal notion of risk
- Both evaluation of risk and computation of optimal test suite
- Easily adaptable to be used as a coverage measure

Main results

- Formal notion of risk
- Both evaluation of risk and computation of optimal test suite
- Easily adaptable to be used as a coverage measure

Directions for Future Work

- Validation of the framework: tool support, case studies
- Dependencies between errors
- On-the-fly test derivation

