
Submitted to:
QAPL 2012

c© M. Timmer & J.-P. Katoen & J.C. van de Pol & M.I.A. Stoelinga
This work is licensed under the
Creative Commons Attribution License.

Efficient Modelling and Generation of Markov Automata∗

Mark Timmer1 Joost-Pieter Katoen1,2

1Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands

timmer@cs.utwente.nl

Jaco van de Pol1 Mariëlle Stoelinga1

2Software Modeling and Verification Group
RWTH Aachen University, Germany

katoen@cs.rwth-aachen.de

This presentation introduces a process-algebraic framework with data for modelling and generating
Markov automata. We show how an existing linearisation procedure for process-algebraic representa-
tions of probabilistic automata can be reused to transform systems in our new framework to a special
format. This format enables easy state space generation and facilitates the definition of syntactic re-
duction techniques. We introduce several such techniques, which treat data as well as Markovian and
interactive behaviour in a fully symbolic manner. In this way, reductions are obtained on the specifi-
cation level instead of the model level, reducing state spaces prior to their construction.

1 Introduction

In the past decade, must research has been devoted to improving the efficiency of probabilistic model
checking: verifying properties on systems that are governed by, in general, both probabilistic and nonde-
terministic choices. This way, many models in areas like security, distributed systems, systems biology
and networking have been successfully used for dependability and performance analysis.

Recently, a new type of model that captures much more behaviour was introduced: Markov au-
tomata (MA) [5, 4, 3]. In addition to nondeterministic and probabilistic choices, MAs also contain Marko-
vian transitions, i.e., transitions subject to an exponentially distributed delay in continuous time. Hence,
MAs can be seen as a unification of probabilistic automata (PAs) [13, 14] (containing nondeterminis-
tic and probabilistic transitions) and interactive Markov chains (IMCs) [8] (containing nondeterministic
and Markovian transitions). They can be used to provide a natural semantics for Generalized Stochastic
Petri Nets [11], the domain-specific language AADL [1] and (dynamic) fault trees [2]; i.e., MAs are very
general and can be used to describe most behaviour that is modelled these days.

Example 1. Consider a buffer with infinite capacity, that has a 1
3 probability of having an arrival with

rate λ1 and a 2
3 probability of having an arrival with rate λ2. Due to multiple processors the service rate

is assumed to increase linearly when the buffer fills, i.e., if there are n tasks in the buffer then the service
rate is n ·µ . The corresponding MA representation is given in Figure 1.

Note that this example does not yet show the full expressivity of MAs, since there is no nondeterminism
present. Also, the probabilistic choices could be encoded in the rates, reducing the model to a CTMC. We
chose to keep things simple, however, to be able to demonstrate our language on an easy specification.

Although several formalisms to specify PAs and IMCs exist, no data-rich specification language for
MAs has been introduced so far. Since realistic systems often consist of a very large number of states,
such a method to model systems on a higher level, instead of explicitly providing the state space, is vital.
Additionally, the omnipresent state space explosion clearly also applies to MAs; therefore, specifications
on a higher level than the actual MAs might be essential for syntactic optimisations that already reduce
their corresponding state spaces before construction.

∗This research has been partially funded by NWO under grants 612.063.817 (SYRUP) and Dn 63-257 (ROCKS).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Efficient Modelling and Generation of Markov Automata

q0

f0

s0

q1

f1

s1

q2

f2

s2

q3

f3

s3

· · ·

λ1

λ2

µ

µ

1
3

2
3

τ

λ1

λ2

2µ

2µ

1
3

2
3

τ

λ1

λ2

1
3

2
3

τ

λ1

λ2

1
3

2
3

3µ

3µ

τ

Figure 1: State space of a buffer with probabilistic arrival behaviour.

2 A symbolic representation of Markov Automata

To fulfill the needs described above, we extended the process-algebraic framework for PAs that was in-
troduced in [9, 10]. We show how this framework, that allows the combination of data and probabilistic
choice, can easily be generalised to MAs. The process-algebraic specification language for MAs we ob-
tain this way is called MAPA. Due to space limitations of this abstract, we do not show its precise syntax
and semantics here, but illustrate the language by means of the following example.

Example 2. The MAPA specification below corresponds to the MA in Figure 1. We chose the concrete
values λ1 = 2 and λ2 = 4, as well as µ = 5. Also, for clarity we added some labelled actions.

Arrival = chooseType ∑•
i:{1,2}

i
3

: (2 · i) . arrive . Arrival

Queue(n : N) = incoming . Queue(n+1)

+n > 0⇒ (n ·5) . completion . Queue(n−1)
System = ∂{incoming,arrive}(Queue(0) || Arrival)

γ(arrive, incoming) = arrival

Notice that the queue itself and the arrival
process have been declared separately. The ar-
rival process continuously chooses a type of
task, by taking a value i out of the set {1,2}.
Then, if i = 1 was chosen (which happens with
probability i

3 = 1
3), the process is subject to an

exponential delay with rate 2 · i = 2, after which
a task arrives and the process is repeated. If i = 2 is chosen (which happens with probability 2

3), a task
arrives after a delay governed by an exponential rate of 4. The queue has a process variable to count the
number of tasks. It always accepts incoming tasks, after which it increases its counter. If the counter is
positive, it also works on tasks and completes them after a Markovian delay with rate n ·5.

The system as a whole consists of the queue (initially empty) in parallel to the arrival process. The
γ-statement indicates that the arrive and incoming actions can synchronise: they can happen at the same
time, resulting in the action arrival. The ∂ -operator encapsulates the individual actions arrive and incom-
ing, meaning that they cannot occur by themselves in System, but only together as an arrival.

Note that our data-rich language allowed us to model an infinite system with a finite specification. If
a finite system is required, the queue size could be restricted to a certain max and an additional nondeter-
ministic choice n = max⇒ drop . Queue(max) could be added.

Our new language has at least two purposes. First, it enables writing down Markov automata on a
higher level. Due to the possibility to use data types as well as parallel composition, these specifications
are often much smaller than the automata they model. Second, our language enables several syntactic
reductions, similar to those defined for the language µCRL [7] and the probabilistic language prCRL [10].
There, each specification is first linearised to a carefully-chosen subset of the language, which simplifies
both state space generation and the definition of many syntactic reduction techniques. In prCRL, a spec-
ification in this subset is called an LPPE (linear probabilistic process equation), and we defined a similar
subset of MAPA, called a Markovian LPPE (MLPPE). Similar to the LPPE, an MLPPE always consists
of precisely one process (so parallel processes are encoded into one) that is a nondeterministic choice
between process terms containing exactly one action and one recursive process call: the summands. Such

M. Timmer & J.-P. Katoen & J.C. van de Pol & M.I.A. Stoelinga 3

MAPA

MLPPE

prCRL

LPPE

≈

encode

Linearisation
decode

Figure 2: Linearising MAPA specifications using prCRL linerarisation.

a summand can be seen as a symbolic transition, as it unfolds to many concrete transitions.
In [10] we gave a rather complicated algorithm for transforming prCRL specifications to bisimilar

LPPEs. Instead of redoing all this work for MAPA, we managed to encode MAPA specifications into
prCRL, such that the resulting prCRL specifications can be linearised to LPPEs and these LPPEs can be
decoded to MLPPEs. We now proved the correctness of this procedure, i.e., we showed that an original
MAPA specification and the MLPPE obtained in this way are strongly bisimilar. Figure 2 illustrates the
approach. This has been implemented in the SCOOP tool [16], enabling the specification of MAs in
MAPA and exporting the state spaces to the Alderaban format (e.g., to visualise them with CADP [6]).

2.1 Reduction techniques

We showed in [12] and [15] how the LPPE format allows significant optimisations using various reduction
techniques, and implemented these in the tool SCOOP [16]. This presentation describes several reduction
techniques for MLPPEs; we generalised four existing reduction techniques from LPPEs to MLPPEs,
and defined two additional techniques to apply specifically to MAs. An implementation is currently in
progress. The generalisation of the more involved confluence reduction [15] is a topic of future work.
Generalisation of existing techniques. Constant elimination [10] detects if a parameter of an LPPE
never changes its value. Then, the parameter is omitted and every reference to it is replaced by its initial
value. Clearly, this reduction technique can be used unchanged for MLPPEs. The same holds for ex-
pression simplification [10]: we can easily evaluate functions for which all parameters are constants and
applying basic laws from logic. Summation elimination [10] can also be applied to MLPPEs, but only in
a careful manner. A term of the form ∑d:N d = 5⇒ send(d) can clearly be changed to send(5), but the
LPPE reduction from for instance ∑d:{1,2,3}(λ) . finish to (λ) . finish is not valid anymore.

The techniques above do not change the state space, but improve readability and speed up state space
generation. Dead-variable reduction [12] additionally reduces the number of states. It takes into account
the control flow of an LPPE and tries to detect states in which the value of some data variable is irrelevant.
Basically, this is the case if that variable will be overwritten before being used for all possible futures.
Then, it is reset to its initial value. This technique works for MLPPEs just as for LPPEs.
Novel reduction techniques. Due to the maximal progress assumption, no Markovian transition can
be taken from a state that also allows a τ-transition. Hence, such Markovian transitions can safely be
omitted, including all states that are only reachable by such a transition. This maximal progress reduction
can be applied during state space generation, but is more efficient on the MLPPE level: we just omit all
Markovian summands that are always enabled together with non-Markovian summands. Note that, to
detect such scenarios, some kind of automatic theorem proving has to be applied, as in [12].

Additionally, if a Markovian transition is followed by an invisible transition, these can be merged. For
instance, in Figure 1 each transition fi −λ1−→ qi+1 can be merged with the τ-transition leaving qi+1, replacing
it by the two transitions fi −

1/3λ1−−→ fi+1 and fi −
2/3λ1−−→ si+1. Doing the same for the λ2-transitions, all states qi

for i > 0 can be omitted. Such transition merging can also be performed on an MLPPE. Moreover, terms
such as ∑d:{1,2,3}(λ) . finish can be changed to (3λ) . finish: the variable d is not used in the argument of
the summation, but does cause a multiplication of the Markovian transitions.

4 Efficient Modelling and Generation of Markov Automata

3 Conclusions

We introduced MAPA, a new process-algebraic language for specifying Markov automata. It enables
easy modelling and state space generation, as well as reduction techniques that are simplified by first
linearising to an MLPPE. We defined an encoding of MAPA to the existing probabilistic process-algebraic
language prCRL, and proved that the linearisation procedure of prCRL can be reused to linearise MAPA
specifications. This shows the versatility of our framework.

Based on the MLPPE format, several reduction techniques can be defined. We already generalised
four such techniques from prCRL to MAPA, and defined two novel ones. Note that these techniques can
now also be applied to any GSPN, IMC, DTMC or CTMC, as each of these can be modelled as an MA.

References
[1] International Society of Automotive Engineers (2004): Architecture Analysis and Design Language (AADL).

SAE Standard AS5506.
[2] H. Boudali, P. Crouzen & M. I. A. Stoelinga (2007): Dynamic Fault Tree Analysis Using Input/Output Interac-

tive Markov Chains. In: Proc. of the 37th Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN), IEEE Computer Society, pp. 708–717.

[3] Y. Deng & M. Hennessy (2011): On the Semantics of Markov Automata. In: Proc of the 38th Int. Coll. on
Automata, Languages and Programming (ICALP), LNCS 6756, Springer, pp. 307–318.

[4] C. Eisentraut, H. Hermanns & L. Zhang (2010): Concurrency and Composition in a Stochastic World. In:
Proc. of the 21th Int. Conf. on Concurrency Theory (CONCUR), LNCS 6269, Springer, pp. 21–39.

[5] C. Eisentraut, H. Hermanns & L. Zhang (2010): On Probabilistic Automata in Continuous Time. In: Proc. of
the 25th Annual IEEE Symp. on Logic in Computer Science (LICS), IEEE Computer Society, pp. 342–351.

[6] H. Garavel, F. Lang, R. Mateescu & W. Serwe (2011): CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes. In: Proc. of the 17th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS 6605, Springer, pp. 372–387.

[7] J. F. Groote & A. Ponse (1995): The syntax and semantics of µCRL. In: Proc. of Algebra of Communicating
Processes, Workshops in Computing, Springer, pp. 26–62.

[8] H. Hermanns (2002): Interactive Markov Chains: The Quest for Quantified Quality. LNCS 2428, Springer.
[9] J.-P. Katoen, J. C. van de Pol, M. I. A. Stoelinga & M. Timmer (2010): A linear process-algebraic format

for probabilistic systems with data. In: Proc. of the 10th Int. Conf. on Application of Concurrency to System
Design (ACSD), IEEE, pp. 213–222.

[10] J.-P. Katoen, J.C. van de Pol, M.I.A. Stoelinga & M. Timmer (2012): A linear process-algebraic format with
data for probabilistic automata. Theoretical Computer Science 413(1), pp. 36–57.

[11] M. A. Marsan, G. Conte & G. Balbo (1984): A Class of Generalized Stochastic Petri Nets for the Performance
Evaluation of Multiprocessor Systems. ACM Transactions on Computer Systems (TOCS) 2(2), pp. 93–122.

[12] J. C. van de Pol & M. Timmer (2009): State Space Reduction of Linear Processes using Control Flow Recon-
struction. In: Proc. of the 7th Int. Symp. on Automated Technology for Verification and Analysis (ATVA),
LNCS 5799, Springer, pp. 54–68.

[13] R. Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis, MIT.
[14] M. I. A. Stoelinga (2002): An introduction to probabilistic automata. Bulletin of the EATCS 78, pp. 176–198.
[15] M. Timmer, M. I. A. Stoelinga & J. C. van de Pol (2011): Confluence Reduction for Probabilistic Systems. In:

Proc. of the 17th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS 6605, Springer, pp. 311–325.

[16] Mark Timmer (2011): SCOOP: A Tool for SymboliC Optimisations of Probabilistic Processes. In: Proc. of
the 8th Int. Conf. on Quantitative Evaluation of Systems (QEST), IEEE Computer Society, pp. 149–150.

	Introduction
	A symbolic representation of Markov Automata
	Reduction techniques

	Conclusions

