
Submitted to:
QAPL 2010

c© J.-P. Katoen, J. van de Pol, M. Stoelinga, M. Timmer
This work is licensed under the
Creative Commons Attribution License.

A linear process algebraic format
for probabilistic systems with data∗

Joost-Pieter Katoen
MOVES Group

RWTH Aachen University, Germany
katoen@cs.rwth-aachen.de

Jaco van de Pol Mariëlle Stoelinga Mark Timmer
FMT Group

University of Twente, The Netherlands
{vdpol, marielle, timmer}@cs.utwente.nl

In this presentation we introduce a novel linear process algebraic format for probabilistic automata.
The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorpo-
rate data into this linear format while preserving strong probabilistic bisimulation. This generalises
similar techniques for traditional process algebras with data, and — more importantly — treats data
and data-dependent probabilistic choice in a fully symbolic manner, paving the way to the symbolic
analysis of parameterised probabilistic systems.

1 Introduction

Efficient model-checking algorithms exist, supported by powerful software tools, for verifying qualitative
and quantitative properties for a wide range of probabilistic models. These techniques are applied in areas
like security, randomised distributed algorithms, systems biology, and dependability and performance
analysis. Major deficiencies of probabilistic model checking are the state explosion problem and the
restricted treatment of data.

As opposed to process calculi like µCRL [14] and E-LOTOS that support rich data types, the treat-
ment of data in modeling formalisms for probabilistic systems is mostly neglected. Instead, the focus has
been on understanding random phenomena and modeling the interplay between randomness and nonde-
terminism. Data is treated in a restricted manner: probabilistic process algebras typically allow a random
choice over a fixed distribution, and input languages for model checkers such as the reactive module
language of PRISM [25] or the probabilistic variant of Promela [2] only support basic data types, but
neither support more advanced data structures or parameterised, i.e., state-dependent, random choice.
To model realistic systems, however, convenient means for data modeling are indispensable.

Although parameterised probabilistic choice is semantically well-defined [7], the incorporation of
data yields a significant increase of, or even an infinite, state space. Applying aggressive abstraction
techniques for probabilistic models (e.g., [9, 1, 17, 20, 22]) obtain smaller models at the model level,
but the successful analysis of data requires symbolic reduction techniques. These minimise stochastic
models by syntactic transformations at the language level in order to minimise state spaces prior to their
generation, while preserving functional and quantitative properties. Other approaches that partially deal
with data are probabilistic CEGAR [18, 21] and the probabilistic GCL [19].

∗This research has been partially funded by NWO under grant 612.063.817 (SYRUP) and grant Dn 63-257 (ROCKS), and
by the European Union under FP7-ICT-2007-1 grant 214755 (QUASIMODO).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A linear process algebraic format for probabilistic systems with data

2 Approach

Our aim is to develop symbolic minimisation techniques — operating at the syntax level — for data-
dependent probabilistic systems. The starting point for our work is covered by this presentation. We
define a probabilistic variant of the process algebraic µCRL language [14], named prCRL, which treats
data as first-class citizens. The language prCRL contains a carefully chosen minimal set of basic op-
erators, on top of which syntactic sugar can be defined easily, and allows data-dependent probabilistic
branching. It enables the specification of systems incorporating probabilistic choice, nondeterministic
choice, conditional behaviour, parallel composition, hiding and encapsulation.

As a basic example, consider the following prCRL specification. It models a system that continuously
and randomly writes data elements of some finite type D. After each write, it beeps with probability 0.1:

B = τ∑•
d:D

1
|D| : send(d)(0.1: beep ·B⊕ 0.9: B)

To enable symbolic reductions, we define a two-phase algorithm to transform prCRL terms into
LPPEs: a probabilistic variant of linear process equations (LPEs) [3], which is a restricted form of
process equations akin to the Greibach normal form for string grammars. Basically, an LPPE is a flat
process description, consisting of a collection of summands that describe symbolic transitions. Each
summand can perform an action and probabilistically move on to some next state, given that a certain
condition based on the system state is true.

As an example, we provide an LPPE that is strongly probabilistic bisimilar to the system B defined
above, given that it is initialised with pc = 1:

X(pc : {1,2,3},x : D) =

pc = 1⇒ τ∑•
d:D

1
|D| : X(2,d)

+pc = 2⇒ send(x)(0.1: X(3,x)⊕0.9: X(1,x))

+pc = 3⇒ beep ·X(1,x)

Note that two additional process parameters had to be introduced. The first is used as a sort of program
counter, whereas the second is used for remembering the value that was chosen to send.

The algorithm we provide is able to transform every well-formed prCRL specification to an LPPE.
We prove that this transformation is correct, in the sense that it preserves strong probabilistic bisim-
ulation [23]. Similar linearisations have been provided for plain µCRL [8] and a real-time variant
thereof [26].

To motivate the expected advantage of a probabilistic linear format, we draw an analogy with the
purely functional case. There, LPEs provided a uniform and simple format for a process algebra with
data. As a consequence of this simplicity, the LPE format was essential for theory development and tool
construction. It lead to elegant proof methods, like the use of invariants for process algebra [3], and the
cones and foci method for proof checking process equivalence [15, 11]. It also enabled the application of
model checking techniques to process algebra, such as optimisations from static analysis [12] (including
dead variable reduction [24]), data abstraction [10], distributed model checking [6], symbolic model
checking (either with BDDs [5] or by constructing the product of an LPE and a parameterised µ-calculus
formula [13, 16]), and confluence reduction [4], a form of partial-order reduction. In all these cases, the
LPE format enabled a smooth theoretical development with rigorous correctness proofs (often checked
in PVS), and a unifying tool implementation, enabling the cross-fertilisation of the various techniques

J.-P. Katoen, J. van de Pol, M. Stoelinga, M. Timmer 3

by composing them as LPE-LPE transformations. The LPPE format will allow similar methods to be
developed for probabilistic systems.

We developed a Haskell implementation of the linearisation algorithm for prCRL specifications.
Based on results obtained using this implementation, we will demonstrate the whole process of going
from prCRL to LPPE and applying reductions to this LPPE by discussing a case study of a leader election
protocol.

3 Conclusions and future work

We developed a linear process algebraic format for systems incorporating both nondeterministic and
probabilistic choice. The key ingredients are: (1) the combined treatment of data and data-dependent
probabilistic choice in a fully symbolic manner; (2) a symbolic transformation of probabilistic process
algebra terms with data into this linear format, while preserving strong probabilistic bisimulation.

This work is the first essential step towards the symbolic minimisation of probabilistic state spaces,
as well as the analysis of parameterised probabilistic protocols. Our results show that the treatment of
probabilities is simple and elegant, and rather orthogonal to the traditional setting [26].

Future work will concentrate on branching bisimulation preserving symbolic minimisation tech-
niques such as confluence reduction [4] — techniques already proven useful for LPEs.

References

[1] L. de Alfaro & P. Roy (2007): Magnifying-lens abstraction for Markov decision processes. In: Proc. of the
19th Int. Conf. on Computer Aided Verification (CAV), LNCS 4590. pp. 325–338.

[2] C. Baier, F. Ciesinski & M. Größer (2004): PROBMELA: a modeling language for communicating proba-
bilistic processes. In: Proc. of the 2nd ACM/IEEE Int. Conf. on Formal Methods and Models for Co-Design
(MEMOCODE). pp. 57–66.

[3] M. Bezem & J.F. Groote (1994): Invariants in Process Algebra with Data. In: Proc. of the 5th Int. Conf. on
Concurrency Theory (CONCUR), LNCS 836. pp. 401–416.

[4] S. Blom & J. van de Pol (2002): State Space Reduction by Proving Confluence. In: Proc. of the 14th Int.
Conf. on Computer Aided Verification (CAV), LNCS 2404. pp. 596–609.

[5] S. Blom & J. van de Pol (2008): Symbolic Reachability for Process Algebras with Recursive Data Types. In:
Proc. of the 5th Int. Colloquium on Theoretical Aspects of Computing (ICTAC), LNCS 5160. Springer, pp.
81–95.

[6] Stefan Blom, Bert Lisser, Jaco van de Pol & Michael Weber (2009): A Database Approach to Distributed
State-Space Generation. Journal of Logic and Computation Advance Access, published March 5.

[7] H.C. Bohnenkamp, P.R. D’Argenio, H. Hermanns & J.-P. Katoen (2006): MODEST: A Compositional Mod-
eling Formalism for Hard and Softly Timed Systems. IEEE Transactions of Software Engineering 32(10), pp.
812–830.

[8] D. Bosscher & A. Ponse (1995): Translating a process algebra with symbolic data values to linear format. In:
Proc. of the 1st Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
BRICS Notes Series NS-95-2. pp. 119–130.

[9] P.R. D’Argenio, B. Jeannet, H.E. Jensen & K.G Larsen (2001): Reachability analysis of probabilistic systems
by successive refinements. In: Proc. of the Joint Int. Workshop on Process Algebra and Probabilistic Methods,
Performance Modeling and Verification (PAPM-PROBMIV), LNCS 2165. pp. 39–56.

[10] M.V. Espada & J. van de Pol (2007): An abstract interpretation toolkit for µCRL. Formal Methods in System
Design 30(3), pp. 249–273.

4 A linear process algebraic format for probabilistic systems with data

[11] W. Fokkink, J. Pang & J. van de Pol (2006): Cones and foci: A mechanical framework for protocol verifica-
tion. Formal Methods in System Design 29(1), pp. 1–31.

[12] J.F. Groote & B. Lisser (2001): Computer Assisted Manipulation of Algebraic Process Specifications. Tech-
nical Report SEN-R0117, CWI.

[13] J.F. Groote & R. Mateescu (1998): Verification of Temporal Properties of Processes in a Setting with Data.
In: Proc. of the 7th Int. Conf. on Algebraic Methodology and Software Technology (AMAST), LNCS 1548.
Springer, pp. 74–90.

[14] J.F. Groote & A. Ponse (1995): The syntax and semantics of µCRL. In: Proc. of Algebra of Communicating
Processes, Workshops in Computing. pp. 26–62.

[15] J.F. Groote & J. Springintveld (2001): Focus points and convergent process operators: a proof strategy for
protocol verification. Journal of Logic and Algebraic Programming 49(1-2), pp. 31–60.

[16] J.F. Groote & T.A.C. Willemse (2005): Model-checking processes with data. Science of Computer Program-
ming 56(3), pp. 251–273.

[17] T.A. Henzinger, M. Mateescu & V. Wolf (2009): Sliding Window Abstraction for Infinite Markov Chains. In:
Proc. of the 21st Int. Conf. on Computer Aided Verification (CAV), LNCS 5643. pp. 337–352.

[18] H. Hermanns, B. Wachter & L. Zhang (2008): Probabilistic CEGAR. In: Proc. of the 20th Int. Conf. on
Computer Aided Verification (CAV), LNCS 5123. pp. 162–175.

[19] J. Hurd, A. McIver & C. Morgan (2005): Probabilistic guarded commands mechanized in HOL. Theoretical
Computer Science 346(1), pp. 96–112.

[20] J.-P. Katoen, D. Klink, M. Leucker & V. Wolf (2007): Three-valued abstraction for continuous-time Markov
chains. In: Proc. of the 19th Int. Conf. on Computer Aided Verification (CAV), LNCS 4590. pp. 311–324.

[21] M. Kattenbelt, M.Z. Kwiatkowska, G. Norman & D. Parker (2009): Abstraction Refinement for Probabilistic
Software. In: Proc. of the 19th Int. Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI), LNCS 5403. pp. 182–197.

[22] M.Z. Kwiatkowska, G. Norman & D. Parker (2006): Game-based abstraction for Markov decision processes.
In: Proc. of the 3rd Int. Conf. on Quantitative Evaluation of Systems (QEST). pp. 157–166.

[23] K.G. Larsen & A. Skou (1991): Bisimulation through Probabilistic Testing. Information and Computation
94(1), pp. 1–28.

[24] J. van de Pol & M. Timmer (2009): State Space Reduction of Linear Processes using Control Flow Recon-
struction. In: Proc. of the 7th Int. Symp. on Automated Technology for Verification and Analysis (ATVA),
LNCS 5799. pp. 54–68.

[25] http://www.prismmodelchecker.org/.
[26] Y.S. Usenko (2002): Linearization in µCRL. Ph.D. thesis, Eindhoven University of Technology.

http://www.prismmodelchecker.org/

	Introduction
	Approach
	Conclusions and future work

