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In this presentation we introduce a novel linear process algebraic format for probabilistic automata.
The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorpo-
rate data into this linear format while preserving strong probabilistic bisimulation. This generalises
similar techniques for traditional process algebras with data, and — more importantly — treats data
and data-dependent probabilistic choice in a fully symbolic manner, paving the way to the symbolic
analysis of parameterised probabilistic systems.

1 Introduction

Efficient model-checking algorithms exist, supported by powerful software tools, for verifying qualitative
and quantitative properties for a wide range of probabilistic models. These techniques are applied in areas
like security, randomised distributed algorithms, systems biology, and dependability and performance
analysis. Major deficiencies of probabilistic model checking are the state explosion problem and the
restricted treatment of data.

As opposed to process calculi like µCRL [14] and E-LOTOS that support rich data types, the treat-
ment of data in modeling formalisms for probabilistic systems is mostly neglected. Instead, the focus has
been on understanding random phenomena and modeling the interplay between randomness and nonde-
terminism. Data is treated in a restricted manner: probabilistic process algebras typically allow a random
choice over a fixed distribution, and input languages for model checkers such as the reactive module
language of PRISM [25] or the probabilistic variant of Promela [2] only support basic data types, but
neither support more advanced data structures or parameterised, i.e., state-dependent, random choice.
To model realistic systems, however, convenient means for data modeling are indispensable.

Although parameterised probabilistic choice is semantically well-defined [7], the incorporation of
data yields a significant increase of, or even an infinite, state space. Applying aggressive abstraction
techniques for probabilistic models (e.g., [9, 1, 17, 20, 22]) obtain smaller models at the model level,
but the successful analysis of data requires symbolic reduction techniques. These minimise stochastic
models by syntactic transformations at the language level in order to minimise state spaces prior to their
generation, while preserving functional and quantitative properties. Other approaches that partially deal
with data are probabilistic CEGAR [18, 21] and the probabilistic GCL [19].
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2 Approach

Our aim is to develop symbolic minimisation techniques — operating at the syntax level — for data-
dependent probabilistic systems. The starting point for our work is covered by this presentation. We
define a probabilistic variant of the process algebraic µCRL language [14], named prCRL, which treats
data as first-class citizens. The language prCRL contains a carefully chosen minimal set of basic op-
erators, on top of which syntactic sugar can be defined easily, and allows data-dependent probabilistic
branching. It enables the specification of systems incorporating probabilistic choice, nondeterministic
choice, conditional behaviour, parallel composition, hiding and encapsulation.

As a basic example, consider the following prCRL specification. It models a system that continuously
and randomly writes data elements of some finite type D. After each write, it beeps with probability 0.1:

B = τ∑•
d:D

1
|D| : send(d)(0.1: beep ·B⊕ 0.9: B)

To enable symbolic reductions, we define a two-phase algorithm to transform prCRL terms into
LPPEs: a probabilistic variant of linear process equations (LPEs) [3], which is a restricted form of
process equations akin to the Greibach normal form for string grammars. Basically, an LPPE is a flat
process description, consisting of a collection of summands that describe symbolic transitions. Each
summand can perform an action and probabilistically move on to some next state, given that a certain
condition based on the system state is true.

As an example, we provide an LPPE that is strongly probabilistic bisimilar to the system B defined
above, given that it is initialised with pc = 1:

X(pc : {1,2,3},x : D) =

pc = 1⇒ τ∑•
d:D

1
|D| : X(2,d)

+pc = 2⇒ send(x)(0.1: X(3,x)⊕0.9: X(1,x))

+pc = 3⇒ beep ·X(1,x)

Note that two additional process parameters had to be introduced. The first is used as a sort of program
counter, whereas the second is used for remembering the value that was chosen to send.

The algorithm we provide is able to transform every well-formed prCRL specification to an LPPE.
We prove that this transformation is correct, in the sense that it preserves strong probabilistic bisim-
ulation [23]. Similar linearisations have been provided for plain µCRL [8] and a real-time variant
thereof [26].

To motivate the expected advantage of a probabilistic linear format, we draw an analogy with the
purely functional case. There, LPEs provided a uniform and simple format for a process algebra with
data. As a consequence of this simplicity, the LPE format was essential for theory development and tool
construction. It lead to elegant proof methods, like the use of invariants for process algebra [3], and the
cones and foci method for proof checking process equivalence [15, 11]. It also enabled the application of
model checking techniques to process algebra, such as optimisations from static analysis [12] (including
dead variable reduction [24]), data abstraction [10], distributed model checking [6], symbolic model
checking (either with BDDs [5] or by constructing the product of an LPE and a parameterised µ-calculus
formula [13, 16]), and confluence reduction [4], a form of partial-order reduction. In all these cases, the
LPE format enabled a smooth theoretical development with rigorous correctness proofs (often checked
in PVS), and a unifying tool implementation, enabling the cross-fertilisation of the various techniques
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by composing them as LPE-LPE transformations. The LPPE format will allow similar methods to be
developed for probabilistic systems.

We developed a Haskell implementation of the linearisation algorithm for prCRL specifications.
Based on results obtained using this implementation, we will demonstrate the whole process of going
from prCRL to LPPE and applying reductions to this LPPE by discussing a case study of a leader election
protocol.

3 Conclusions and future work

We developed a linear process algebraic format for systems incorporating both nondeterministic and
probabilistic choice. The key ingredients are: (1) the combined treatment of data and data-dependent
probabilistic choice in a fully symbolic manner; (2) a symbolic transformation of probabilistic process
algebra terms with data into this linear format, while preserving strong probabilistic bisimulation.

This work is the first essential step towards the symbolic minimisation of probabilistic state spaces,
as well as the analysis of parameterised probabilistic protocols. Our results show that the treatment of
probabilities is simple and elegant, and rather orthogonal to the traditional setting [26].

Future work will concentrate on branching bisimulation preserving symbolic minimisation tech-
niques such as confluence reduction [4] — techniques already proven useful for LPEs.
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