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Abstract. Testing is inherently incomplete; no test suite will ever be
able to test all possible usage scenarios of a system. It is therefore vital
to assess the implication of a system passing a test suite. The work
discussed in this presentation quantifies that implication by means of
two distinct, but related, measures: the risk quantifies the confidence
in a system after it passes a test suite, i.e. the number of faults still
expected to be present (weighted by their severity); the actual coverage
quantifies the extent to which faults have been shown absent, i.e. the
fraction of possible faults that has been covered. We apply a probabilistic
approach, taking into account uncertainties in system behaviour. We
provide evaluation algorithms that calculate the metrics for a given test
suite, as well as optimisation algorithms that yield the best test suite for
a given optimisation criterion.

1 Problem description

Software becomes more and more complex, making thorough testing an indis-
pensable part of the development process. The U.S. National Institute of Stan-
dards and Technology has assessed that software faults cost the American econ-
omy almost sixty billion dollars annually. More than a third of these costs could
be eliminated if testing occurred earlier in the development process [14].

An important fact about testing is that it is inherently incomplete, since
testing everything would require infinitely many input scenarios. On the other
hand, passing a well-designed test suite does increase the confidence in the cor-
rectness of the tested product. Therefore, it is important to assess the quality of
a test suite. Two fundamental concepts have been put forward to evaluate test
suite quality: (1) coverage metrics determine which portion of the requirements
and/or implementation-under-test has been exercised by the test suite; (2) risk-
based metrics assess the risk of putting the tested product into operation.

Although existing coverage measures, such as code coverage in black-box test-
ing [3, 12] and state and/or transition coverage in white-box testing [8, 13, 17],
give an indication of the quality of a test suite, it is not necessarily true that
higher coverage implies that more, or more severe, faults are detected. This is
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Fig. 1. An IOLTS and a test case

because these metrics do not take into account where in the system faults are
most likely to occur. Risk-based testing methods do aim at reducing the ex-
pected number of faults, or their severity. However, these are often informal [15],
based on heuristics [2], or indicate which components should be tested best [1],
but rarely quantify the risk after a successful testing process in a precise way.

2 Approach

We present a framework in which test coverage and risk can be defined, computed
and optimised. Key properties are a rigorous mathematical treatment based on
solid probabilistic models, and the result that higher coverage (resp. lower risk)
implies a lower expected number of faults.

Starting point in our theory is a weighted fault specification (WFS), which
consists of a specification describing the desired system behaviour as an input-
output labelled transition systems (IOLTSs), a weight function that describes
the severity of the faults, an error function describing the probability that a
certain error has been made, and a failure function describing the probability
that incorrectly implemented behaviour yields a failure. This failure function is
necessary since observing a correct response once does not yet imply correctness,
as results may be nondeterministic. An example of an IOLTS with one of its
possible test cases is shown in Figure 1.

From the WFS we derive its underlying probability model, i.e. a random
variable that exactly describes the distribution of erroneous implementations.
This allows us to define risk and actual coverage in an easy and precise way.
Given a WFS, we define the risk of a test suite as the expected fault weight that
remains after this test suite passes. We will show how to construct a test suite
of a certain size with minimal expected risk.

We also introduce actual coverage for a test suite, which quantifies the risk
reduction after passing the test suite. Whereas the risk is based on faults con-
tained within the entire system, actual coverage only relates to the part of a



system we tested. This coincides with the traditional interpretation of coverage.
Optimisation with respect to actual coverage can be done in exactly the same
way as optimisation with respect to risk.

Our methods refine [5], which introduces a concept we would call potential
coverage, since it considers which faults can be detected during testing. Our
measures, on the other hand, take into account the faults that are actually
covered during a test execution.

While error probabilities and failure probabilities are important ingredients
in our framework, techniques for obtaining these probabilities fall outside the
scope of this presentation. However, there is extensive literature on factors that
determine them. For instance, as described in [6], estimating the error proba-
bilities can be based on the software change history. They can also be based
on McCabe’s cyclomatic complexity number [10], Halstead’s set of Software Sci-
ence metrics [7], and requirements volatility [9]. The failure probabilities can
be obtained by applying one of the many analysis techniques described in [11]
and [18]. In practice it might still be difficult to estimate all the probabilities
that are needed, asking for simplifying approximations. Our theory could then
serve as a baseline for sensitivity analysis [16], making it possible to assess the
impact of these simplifications.

3 Conclusions and opportunities

While testing is an important part of today’s software development process, little
research has been devoted to the interpretation of a successful testing process.
The work discussed in this presentation describes how to specify systems and
their probabilistic behaviour. Based on such specifications, two measures can be
calculated. Risk denotes the confidence in the system after testing is successful,
whereas actual coverage denotes how much was tested.

Our work gives rise to several directions for future research. First, it is cru-
cial to validate our framework by means of creating tool support and applying
this in a series of case studies. Second, it might be useful to include fault de-
pendencies in our models. Third, it is interesting to investigate the possibilities
of on-the-fly test derivations (as e.g. performed by the tool TorX [4]) based on
risk or actual coverage. This could yield a tool that, during testing, calculates
probabilities and decides which branches to take for an optimal result. Finally,
our framework might be used to investigate the sensitivity of the probabilities
that are used. That way, simplifying approximations for risk and actual coverage
could be validated.
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