NFM 2013, MOFFETT FIELD, CA, USA

On-the-fly Confluence Detection for Statistical Model Checking

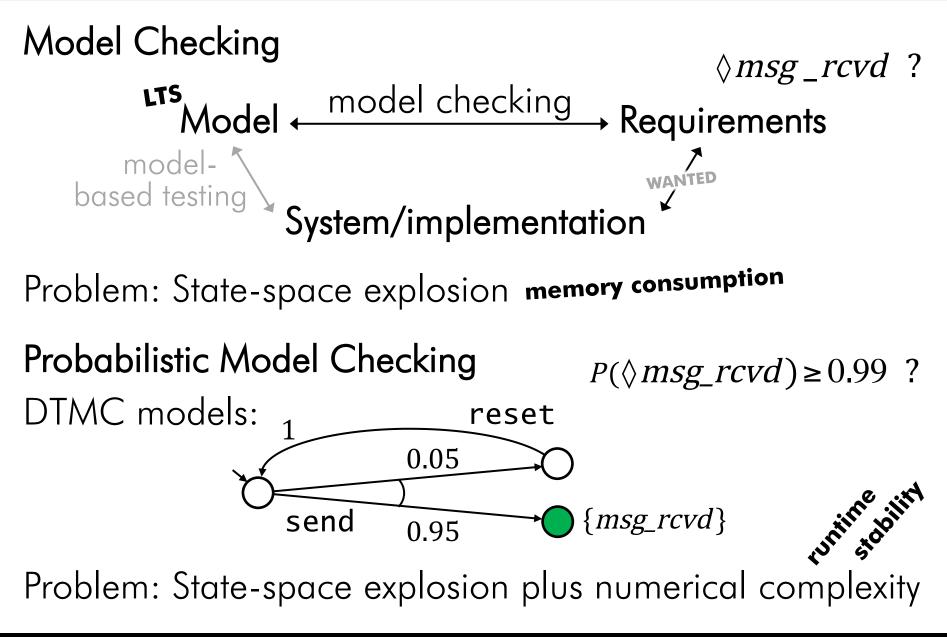
very low m no change

On-the-fly Confluence Detection for Statistical Model Checking^{*}

Arnd Hartmanns¹ and Mark Timmer² ⁴ Saarland University – Computer Science, Saarbrücken, Germany ² Formal Methods and Tools, University of Twente, The Netherlands

Abstract Statistical model checking is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can only provide sound results if the underlying model is a stochastic process. In

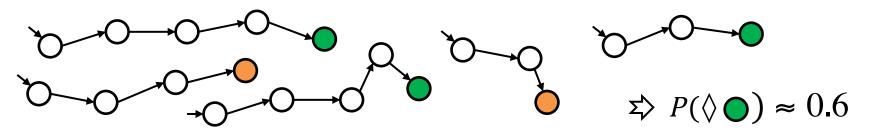
 $\nu(S_i) = \nu(s_i) \land (S_i = \{s_i\} \lor \forall s \in S_i\}$


0.95

send

 $n \ge 3$: fail

Arnd Hartmanns and Mark Timmer Saarland University, Germany University of Twente, The Netherlands


{msg_rcvd}

Arnd Hartmanns & Mark Timmer

Statistical Model Checking sm

...confidence intervals, Chernoff-Hoeffding bound, SPRT... error bounds: e.g. result is ϵ -correct with probability δ

 constant memory usage (store only current state) no numeric surprises (e.g. with imprecise arithmetics)
 runtime strongly dependent on desired accuracy

Arnd Hartmanns & Mark Timmer

Statistical Model Checking **versus Nondeterminism** MDP^{/**PA**} MDP^{/**PA**} models: reset

send

 $n \geq 3$: fail

nondeterministic choices $P_{min}(\langle msg_rcvd) \ge 0.99$? $P_{max}(\langle msg_rcvd) \ge 1$?Standard technique:?S implicit uniformly distributed resolution \swarrow some value $\in [P_{min}, P_{max}]$ widely implemented:
PRISM. UPPAAL, ...

Arnd Hartmanns & Mark Timmer

⇒ need to resolve

On-the-fly Confluence Detection for SMC

0.95

0.05: ++n

{*msg_rcvd*}

Previous approaches to SMC for MDPs Partial order reduction-based method:

- Nondeterminism may be spurious = irrelevant for the results, i.e. $P_{\min} = P_{\max}$ ⇒ check for spuriousness on-the-fly and ignore
- very low memory overhead no change to SMC error bounds Faruar Order Methods for Statistical Model Checking and Simulation*
 - spurious interleavings only

Bogdoll, Ferrer Fioriti, H., Hermanns: Partial Order Methods for Statistical Model Checking and Simulation (FMOODS/FORTE 2011)

Arnd Hartmanns & Mark Timmer

On-the

Jonathan Bogdoll, Luis Maria Ferrer Floriti, Arnd Hartmanns, and Holger Hermanns Saarland University Computer Science, Saarbricken, Germany

Abstract. Statistical model checking has become a promising techn to checking the state space contrains problem in model-based veri Abstract. Statustical model checking has become a promising technique to circumyont the state space explosion problem in model-based verifica-tion. It trades time for memory, via a probabilistic simulation and exploto circumvent the state space explosion problem in model-based verifica-tion. It trades time for memory, via a probabilistic simulation and explo-ration of the model behaviour—often combined with effective a posteriori tion. It trades time for memory, via a probabilistic simulation and expla-nation of the model behaviour — often combined with effective a power on homover to be the trade of the trade of

ration of the model behaviour—often combined with effective a ported it can i bypothesis testing. However, as a simulation based approach, it can a

verneeron resure a sue annergans manuel a anner a sus spectral names he opportunities in transition sym

nee of teameric managerical model checking

reduction can be twisted

Previous approaches to SMC for MDPs

Learning-based method:

- technique Use reinforcement learning to obtain from AI memoryless scheduler using simulation
- \Rightarrow use that scheduler for SMC for P_{max} (bounded LTL)

Statistical Model Checking for Markov Decision Processes

David Henriquest, Joso G.

On-the

e*1, Paolo Zulumi*, Aedre Platrer*, Edmund M. Clarke

- + works for every MDP
 - memory usage to store scheduler no error bounds, converges to actual result only

Henriques, Martins, Zuliani, Platzer, Clarke: Statistical Model Checking for Markov Decision Processes (QEST 2012)

Arnd Hartmanns & Mark Timmer

Outline

In this talk: a new method based on **on-the-fly confluence detection**

Probabilistic Confluence Adaption to SMC & advantages over POR

MT

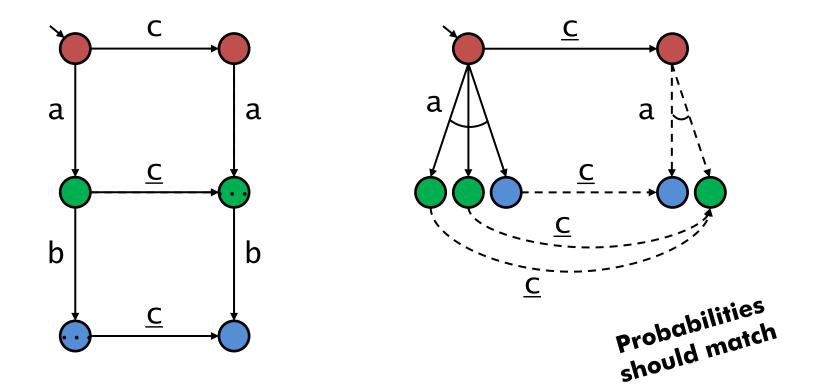
On-the-fly Detection A correct algorithm for use during simulation

Bevaluation Tools, applicability, performance Hartmanns, Timmer: On-the-fly Confluence Detection for Statistical Model Checking (NFM 2013) Ared Hartmanns & Mark Timmer On-the-fly Computed with determined on a state of the state of

Confluence

Transitions can sometimes be given priority:

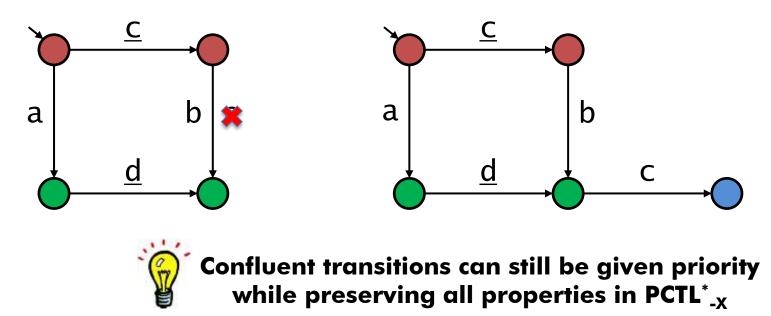
- Stuttering Just like for POR
- Nonprobabilistic


Invisible transitions may disable behaviour... though often they connect equivalent states

Arnd Hartmanns & Mark Timmer

Confluence

How to be sure? Sheck confluence diagram for a set of transitions



Arnd Hartmanns & Mark Timmer

Confluence for SMC

We relax a previous notion in three ways:

- 1. Transitions may be mimicked by different actions
- 2. Transitions have to be stuttering and nonprobabilistic only locally
- 3. Distributions may be related in a more liberal way

Arnd Hartmanns & Mark Timmer

Confluence versus POR

Partial Order Reduction:

- Preserves probabilistic LTL_{-X}
- Based on independent actions and ample sets
- Allows ample actions to be probabilistic

Advantage:can prioritise probabilistic transitionsDisadvantage:not defined for concrete state spaces

reduction powers incomparable

Confluence Reduction:

- Preserves PCTL^{*}_{-X}
- Based on confluent transitions (commuting diagrams)

Advantage:defined for concrete state spacesDisadvantage:cannot prioritise probabilistic transitions

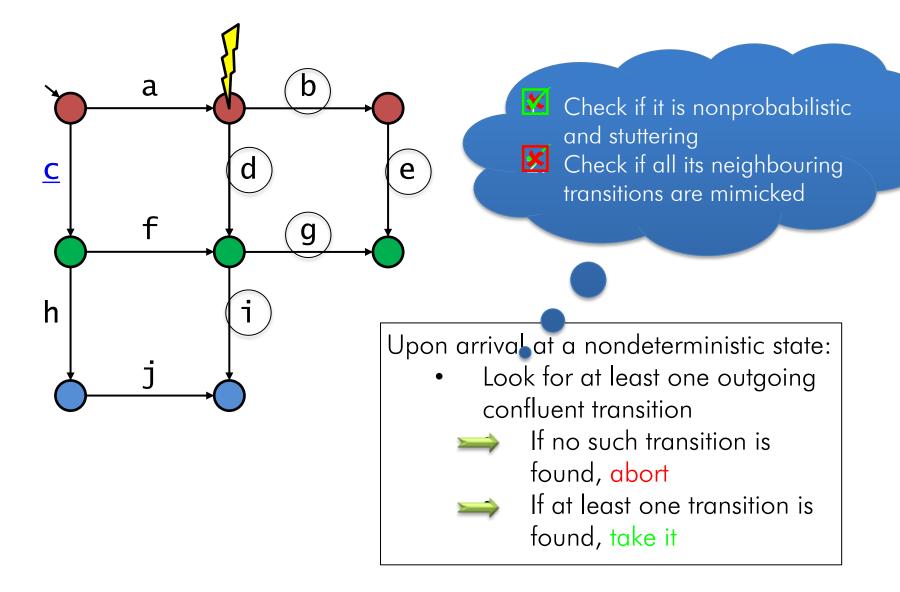
Arnd Hartmanns & Mark Timmer

On-the-fly detection

Simulation / SMC using on-the-fly confluence detection:

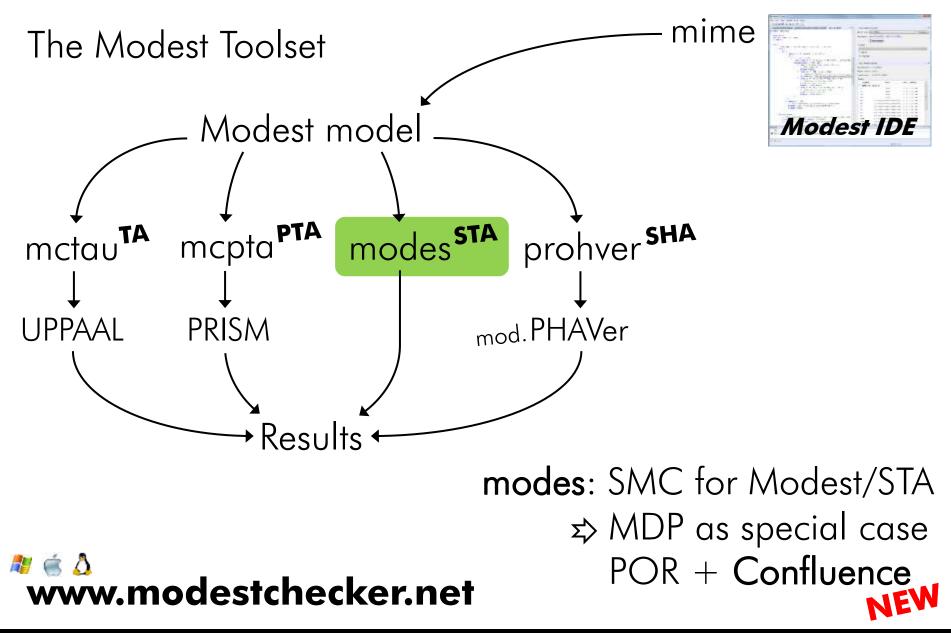
Upon arrival at a nondeterministic state:

- Look for at least one outgoing confluent transition
 - If no such transition is found, abort (or try POR)
 - If at least one transition is found, take it


1. Check if it is nonprobabilistic and stuttering

2. Check if all its neighbouring transitions are mimicked (recursion)

Careful: <u>ignoring problem</u> > Check if at least every *l* steps a state is fully explored


Arnd Hartmanns & Mark Timmer

On the fly detection

Arnd Hartmanns & Mark Timmer

Tool Support

Arnd Hartmanns & Mark Timmer

Evaluation

Examples **PRISM Dining Cryptographers model** N cryptographers, two neighbours each Nondeterminism: communication order

CSMA/CD "DPTA"

Two senders, one shared channel, collisions Nondeterministic choice of station inside channel

BEB (Bounded Exponential Backoff)
Detailed MDP model of exponential backoff
K: max. backoff, N: n° of retries, H: n° of hosts
huae state space

Arnd Hartmanns & Mark Timmer

On-the-fly Confluence Detection for SMC

CONFLUENCE

Evaluation

Results	(10000 runs $\rightarrow \epsilon < 0.01, \delta > 0.98$)											
	ility ties uniform:	partial order:			confluence:				model checking:			
model	params	time	time	k	s	time	k	s	c	t	states	time
$\begin{array}{c} \text{dining} \\ \text{crypto-} \\ \text{graphers} \\ (N) \end{array}$	(3)	$1\mathrm{s}$	—	_	_	$3\mathrm{s}$	4	9	4.0	8.0	609	1 s
	(4)	$1\mathrm{s}$	_	—	_	$11\mathrm{s}$	6	25	6.0	10.0	3841	$2\mathrm{s}$
	(5)	$1\mathrm{s}$	_		_	$44\mathrm{s}$	8	67	8.0	12.0	23809	$7\mathrm{s}$
	(6)	$1\mathrm{s}$	_	_	_	$229\mathrm{s}$	10	177	10.0	14.0	144705	$26\mathrm{s}$
	(7)	$1\mathrm{s}$	_	—	_		- 1	timeou	ıt –		864257	$80\mathrm{s}$
$\mathrm{CSMA/CD}\ (RF, BC_{max})$	(2,1)	$2\mathrm{s}$	_	_	_	$4\mathrm{s}$	3	46	5.4	16.4	15283	11 s
	(1,1)	$2\mathrm{s}$	_	—	_	$4\mathrm{s}$	3	46	5.4	16.4	30256	$49\mathrm{s}$
	(2,2)	$2\mathrm{s}$	_	—	_	$10\mathrm{s}$	3	150	5.1	16.0	98533	$52\mathrm{s}$
	(1,2)	$2\mathrm{s}$	_	—	-	$10\mathrm{s}$	3	150	5.1	16.0	194818	$208\mathrm{s}$
	(4, 3, 3)	$1\mathrm{s}$	3 s	3	4	$1\mathrm{s}$	3	7	3.3	11.6	$> 10^{3}$	$>0\mathrm{s}$
	(8, 7, 4)	$2\mathrm{s}$	$7 \mathrm{s}$	4	8	$4\mathrm{s}$	4	15	5.6	16.7	$> 10^{7}$	$>7\mathrm{s}$
	(16, 15, 5)	$3\mathrm{s}$	$18\mathrm{s}$	5	16	$11\mathrm{s}$	5	31	8.3	21.5	– memo	out –
	(16, 15, 6)	$3\mathrm{s}$	$40\mathrm{s}$	6	32	$34\mathrm{s}$	6	63	11.2	26.2	– memo	out –

performance on BEB
 & CSMA/CD models
 + vs. model-checking

Arnd Hartmanns & Mark Timmer

➡ a bit faster than POR

 does not work well for dining cryptographers

Conclusion

A new approach to SMC for MDPs based on on-the-fly confluence detection

German etherlands

analysis method that circum-

and in model-based verification by about methods that provide is can only provide

- detect confluence on-the-fly on the concrete state space handle more kinds of nondeterminism than POR method

approach	nondeterminism	probabilities	memory	error bounds
POR	spurious interleavings	$P_{\rm max} = P_{\rm min}$	<i>s</i> ≪ <i>n</i>	unchanged
z > confluence	confluent spurious	$P_{\rm max} = P_{\rm min}$	<i>s</i> ≪ <i>n</i>	unchanged
learning	any	$P_{\rm max}$ only	$s \rightarrow n$	convergence

See also www.modestchecker.net

> H, T.: On-the-fly Confluence X **Detection for Statistical** Model Checking (NFM 2013)

Arnd Hartmanns & Mark Timmer

On-the

On-the-fly Confluence D for Statistical Model Cl

Sharinana University Compared Science 2 Roomal Methods and Tools, University

Arnd Hartmanns1 and Mark

Computer Scie