

Interpreting a successful testing process: risk and actual coverage

Mariëlle Stoelinga, **Mark Timmer**University of Twente

3th Dutch Workshop on Formal Testing Techniques April 23, 2009

Contents

- Introduction
- 2 The WFS Model
- Risk
- 4 Other Applications
- **5** Limitations and Possibilities
- 6 Conclusions and Future Work

Introduction – Testing

Why testing?

- Software becomes more and more complex
- Research showed that billions can be saved by testing better
- No need for the source code (black-box perspective)

Introduction – Testing

Why testing?

- Software becomes more and more complex
- Research showed that billions can be saved by testing better
- No need for the source code (black-box perspective)

Model-based testing

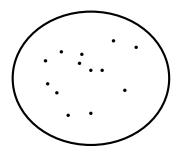
- Precise and formal
- Automatic generation and evaluations of tests
- Repeatable and scientific basis for product testing

Why do we need risk and coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage

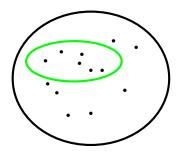
Why do we need risk and coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of quality of a test suite is necessary
- Two fundamental concepts: risk and coverage



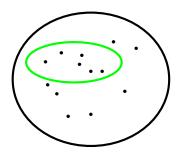
Why do we need risk and coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of quality of a test suite is necessary
- Two fundamental concepts: risk and coverage



Why do we need risk and coverage?

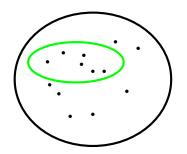
- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage



Informal calculation

Why do we need risk and coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage

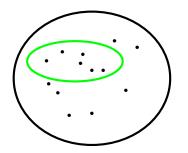


Informal calculation

Coverage: $\frac{6}{13} = 46\%$

Why do we need risk and coverage?

- Testing is inherently incomplete
- Testing does increase our confidence in the system
- A notion of *quality* of a test suite is necessary
- Two fundamental concepts: risk and coverage



Informal calculation

Coverage: $\frac{6}{13} = 46\%$

Risk: $7 \cdot 0.1 \cdot \$10 = \7

Existing coverage measures

Statement coverage

State/transition coverage

Existing coverage measures

Statement coverage

State/transition coverage

Limitations:

- all faults are considered of equal severity
- likely locations for fault occurrence are not taken into account
- syntactic point of view

Existing coverage measures

Statement coverage

State/transition coverage

Limitations:

- all faults are considered of equal severity
- likely locations for fault occurrence are not taken into account
- syntactic point of view

Existing risk measures

Bach

Amland

Existing coverage measures

Statement coverage

State/transition coverage

Limitations:

- all faults are considered of equal severity
- likely locations for fault occurrence are not taken into account
- syntactic point of view

Existing risk measures

Bach

Amland

Limitations:

- Informal
- Based on heuristics
- Only identify testing order for components

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

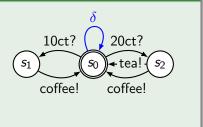
Labelled transition systems

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems

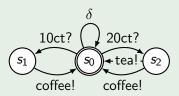


Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems



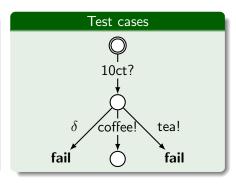
Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems



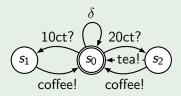


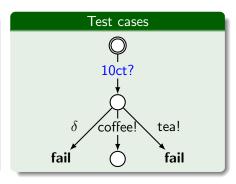
Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems



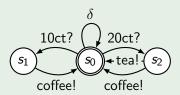


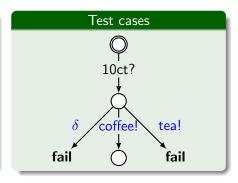
Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems



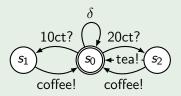


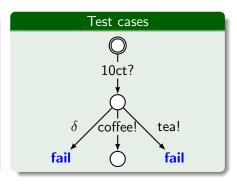
Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

- System considered as black box
- Semantic point of view
- Fault weights

Labelled transition systems





Weighted fault specification

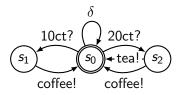
A WFS- consists of

- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)

Weighted fault specification

A WFS⁻ consists of

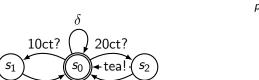
- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)



Weighted fault specification

A WFS⁻ consists of

- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)



coffee!

$$p_{\text{err}}(10\text{ct? coffee!}) = 0.02$$

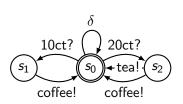
 $p_{\text{err}}(20\text{ct? tea!}) = 0.03$

coffeel

Weighted fault specification

A WFS⁻ consists of

- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)

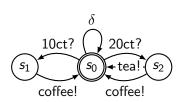


$$p_{
m err}(10{
m ct? \ coffee!}) = 0.02$$
 $p_{
m err}(20{
m ct? \ tea!}) = 0.03$ $w(\epsilon) = 10$ $w(10{
m ct?}) = 15$ $w(10{
m ct? \ coffee!}) = 9.5$

Weighted fault specification

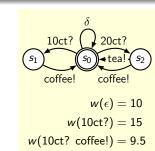
A WFS⁻ consists of

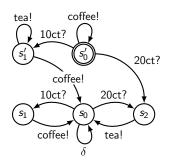
- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)

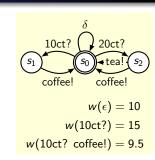


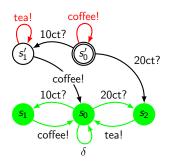
$$p_{
m err}(10{
m ct?~coffee!})=0.02$$
 $p_{
m err}(20{
m ct?~tea!})=0.03$ $w(\epsilon)=10$ $w(10{
m ct?})=15$ $w(10{
m ct?~coffee!})=9.5$

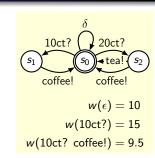
(For more details see TechRep)

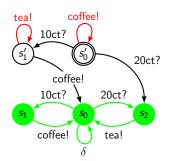




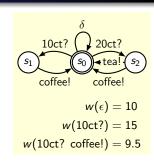


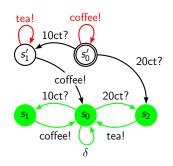


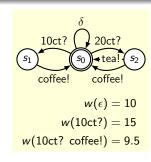




Fault weight: 10 + 15 = 25







Fault weight: 10 + 15 = 25

(We are only interested in whether a fault can occur, not in which one)

Definition

Given a test suite T and a passing execution E, we define

$$risk(T, E) = \mathbb{E}[w(Impl) \mid observe E]$$

i.e., the fault weight still expected to be present after observing E.

Definition

Given a test suite T and a passing execution E, we define

$$risk(T, E) = \mathbb{E}[w(Impl) \mid observe E]$$

i.e., the fault weight still expected to be present after observing E.

Observe:

$$\mathsf{risk}(\langle \rangle, \langle \rangle) =$$

Definition

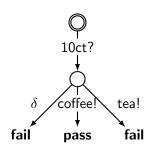
Given a test suite T and a passing execution E, we define

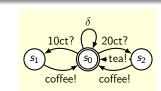
$$risk(T, E) = \mathbb{E}[w(Impl) \mid observe E]$$

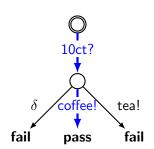
i.e., the fault weight still expected to be present after observing E.

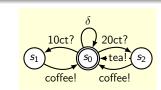
Observe:

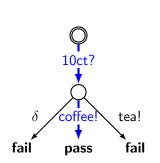
$$\mathsf{risk}(\langle \rangle, \langle \rangle) = \sum_{\sigma} w(\sigma) \cdot p_{\mathsf{err}}(\sigma)$$

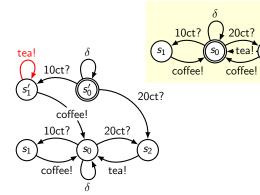


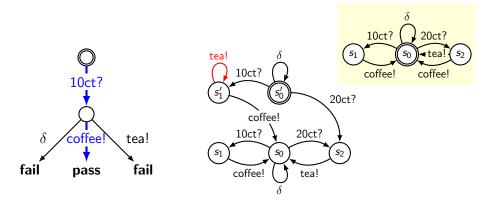




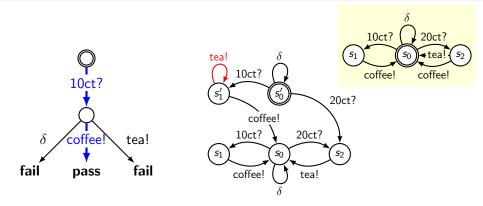




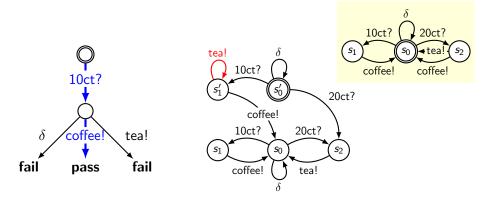




Nondeterministic output behaviour yields difficulties.

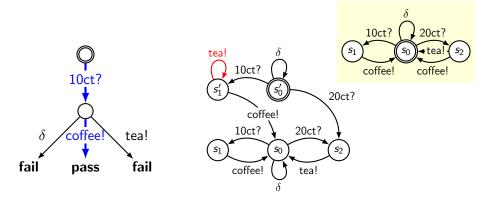


Nondeterministic output behaviour yields difficulties.



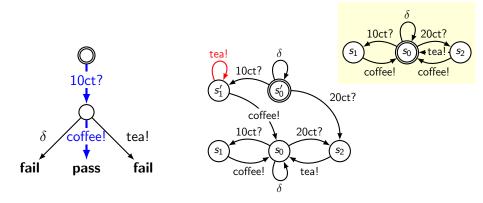
Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(\langle \rangle, \langle \rangle) = \sum_{\sigma} w(\sigma) \cdot p_{\mathsf{err}}(\sigma)$$



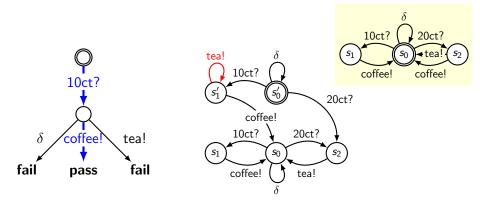
Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(T, E) = \sum_{\sigma \neq 10\mathsf{ct}?} w(\sigma) \cdot p_{\mathsf{err}}(\sigma) + f(10\mathsf{ct}?)$$



Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(\mathcal{T}, \mathcal{E}) = \sum_{\sigma \neq 10 \mathsf{ct?}} w(\sigma) \cdot p_{\mathsf{err}}(\sigma) + f(10 \mathsf{ct?})$$



Nondeterministic output behaviour yields difficulties.

$$\mathsf{risk}(T, E) = \sum_{\sigma \neq 10\mathsf{ct?}} w(\sigma) \cdot p_{\mathsf{err}}(\sigma) + w(10\mathsf{ct?}) \cdot \mathbb{P}[\mathsf{error\ after\ } 10\mathsf{ct?} \mid E]$$

Weighted Fault Specifications (revisited)

Weighted fault specification

A WFS consists of

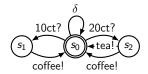
- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)
- A failure function (probability of failure in case of fault)

Weighted Fault Specifications (revisited)

Weighted fault specification

A WFS consists of

- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)
- A failure function (probability of failure in case of fault)

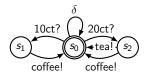


Weighted Fault Specifications (revisited)

Weighted fault specification

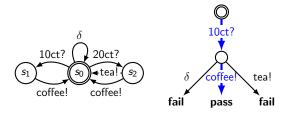
A WFS consists of

- An LTS (expected system behaviour)
- An error function (probability of faults)
- A weight function (severity of faults)
- A failure function (probability of failure in case of fault)



$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

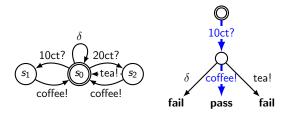
$$p_{\text{fail}}(10\text{ct?}) = 0.5$$



$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

 $p_{\mathrm{fail}}(10$ ct? $) = 0.5$

 $\mathbb{P}[\text{error after 10ct?} \mid \text{observation of } E]$



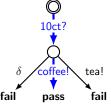
$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

 $p_{\mathrm{fail}}(10$ ct? $) = 0.5$

$$\begin{split} & \mathbb{P}[\text{error after 10ct?} \mid \text{observation of } E] \\ & = \mathbb{P}[\text{error after 10ct?} \mid \text{correct after 10ct? once}] \end{split}$$

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[B \mid A] \cdot \mathbb{P}[A]}{\mathbb{P}[B]}$$





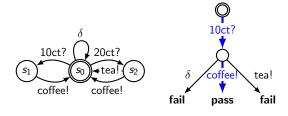
$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

 $p_{\mathrm{fail}}(10$ ct? $) = 0.5$

 $\mathbb{P}[\text{error after 10ct?} \mid \text{observation of } E]$

 $= \mathbb{P}[\text{error after 10ct?} \mid \text{correct after 10ct? once}]$

 $\overset{\text{B} \underline{\text{ayes}}}{=} \frac{\mathbb{P}[\text{correct after } 10\text{ct? once} \mid \text{error after } 10\text{ct?}] \cdot \mathbb{P}[\text{error after } 10\text{ct?}]}{\mathbb{P}[\text{correct after } 10\text{ct? once}]}$

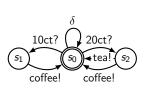


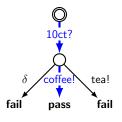
$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

 $p_{\mathrm{fail}}(10$ ct? $) = 0.5$

```
\begin{split} \mathbb{P}[\text{error after 10ct?} \mid \text{observation of } E] \\ &= \mathbb{P}[\text{error after 10ct?} \mid \text{correct after 10ct? once}] \\ &\stackrel{\text{Bayes}}{=} \frac{\mathbb{P}[\text{correct after 10ct? once} \mid \text{error after 10ct?}] \cdot \mathbb{P}[\text{error after 10ct?}]}{\mathbb{P}[\text{correct after 10ct? once}]} \\ &\qquad \qquad (1 - p_{\text{fail}}(10\text{ct?}))^1 \cdot p_{\text{err}}(10\text{ct?}) \end{split}
```

$\mathbb{P}[A] = \mathbb{P}[A \mid B] \cdot \mathbb{P}[B] + \mathbb{P}[A \mid \neg B] \cdot \mathbb{P}[\neg B]$





$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

 $p_{\mathrm{fail}}(10$ ct? $) = 0.5$

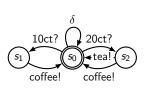
 $\mathbb{P}[\text{error after 10ct?} \mid \text{observation of } E]$

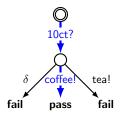
 $= \mathbb{P}[\text{error after 10ct?} \mid \text{correct after 10ct? once}]$

 $\overset{\text{B} \underline{\text{ayes}}}{=} \frac{\mathbb{P}[\text{correct after } 10\text{ct? once} \mid \text{error after } 10\text{ct?}] \cdot \mathbb{P}[\text{error after } 10\text{ct?}]}{\mathbb{P}[\text{correct after } 10\text{ct? once}]}$

$$= \frac{(1 - p_{\text{fail}}(10\text{ct?}))^1 \cdot p_{\text{err}}(10\text{ct?})}{}$$

$\mathbb{P}[A] = \mathbb{P}[A \mid B] \cdot \mathbb{P}[B] + \mathbb{P}[A \mid \neg B] \cdot \mathbb{P}[\neg B]$





$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

 $p_{\mathrm{fail}}(10$ ct? $) = 0.5$

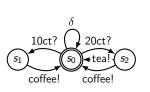
 $\mathbb{P}[\text{error after 10ct?} \mid \text{observation of } E]$

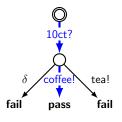
 $= \mathbb{P}[\text{error after 10ct?} \mid \text{correct after 10ct? once}]$

 $\overset{\text{B}\underset{=}{\text{myes}}}{=} \frac{\mathbb{P}[\text{correct after 10ct? once} \mid \text{error after 10ct?}] \cdot \mathbb{P}[\text{error after 10ct?}]}{\mathbb{P}[\text{correct after 10ct? once}]}$

$$=rac{\left(1-p_{ ext{fail}}(10 ext{ct?})
ight)^1\cdot p_{ ext{err}}(10 ext{ct?})}{\left(1-p_{ ext{fail}}(10 ext{ct?})
ight)^1\cdot p_{ ext{err}}(10 ext{ct?})}$$

$\mathbb{P}[A] = \mathbb{P}[A \mid B] \cdot \mathbb{P}[B] + \mathbb{P}[A \mid \neg B] \cdot \mathbb{P}[\neg B]$





$$p_{\mathrm{fail}}(\epsilon) = 1.0$$

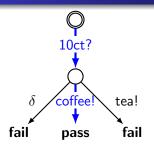
 $p_{\mathrm{fail}}(10$ ct? $) = 0.5$

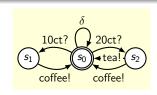
 $\mathbb{P}[\text{error after 10ct?} \mid \text{observation of } E]$

 $= \mathbb{P}[\mathsf{error} \ \mathsf{after} \ \mathsf{10ct?} \ | \ \mathsf{correct} \ \mathsf{after} \ \mathsf{10ct?} \ \mathsf{once}]$

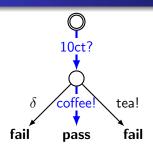
 $\stackrel{\text{B} \underline{\underline{a}} \underline{\underline{v}} \underline{\underline{e}}}{=} \frac{\mathbb{P}[\text{correct after } 10\text{ct? once} \mid \text{error after } 10\text{ct?}] \cdot \mathbb{P}[\text{error after } 10\text{ct?}]}{\mathbb{P}[\text{correct after } 10\text{ct? once}]}$

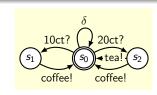
$$= \frac{\left(1 - p_{\mathrm{fail}}(10\mathsf{ct?})\right)^1 \cdot p_{\mathrm{err}}(10\mathsf{ct?})}{\left(1 - p_{\mathrm{fail}}(10\mathsf{ct?})\right)^1 \cdot p_{\mathrm{err}}(10\mathsf{ct?}) + \left(1 - p_{\mathrm{err}}(10\mathsf{ct?})\right)}$$



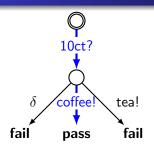


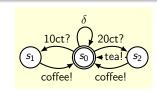
$$\mathsf{risk}(T, E) \\ = \sum_{\sigma \neq 10\mathsf{ct?}} w(\sigma) \cdot p_{\mathsf{err}}(\sigma) + w(10\mathsf{ct?}) \cdot \mathbb{P}[\mathsf{error after } 10\mathsf{ct?} \mid E]$$





$$egin{aligned} \operatorname{risk}(T,E) \ &= \sum_{\sigma
eq 10 \operatorname{ct?}} w(\sigma) \cdot p_{\operatorname{err}}(\sigma) + w(10 \operatorname{ct?}) \cdot \mathbb{P}[\operatorname{error after } 10 \operatorname{ct?} \mid E] \ &= \sum_{\sigma
eq 10 \operatorname{ct?}} w(\sigma) \cdot p_{\operatorname{err}}(\sigma) + \ &= w(10 \operatorname{ct?}) \cdot \frac{(1 - p_{\operatorname{fail}}(10 \operatorname{ct?}))^1 \cdot p_{\operatorname{err}}(10 \operatorname{ct?})}{(1 - p_{\operatorname{fail}}(10 \operatorname{ct?}))^1 \cdot p_{\operatorname{err}}(10 \operatorname{ct?}) + (1 - p_{\operatorname{err}}(10 \operatorname{ct?}))} \end{aligned}$$





$$\begin{split} & \operatorname{risk}(T,E) \\ &= \sum_{\sigma \neq 10 \operatorname{ct?}} w(\sigma) \cdot p_{\operatorname{err}}(\sigma) + w(10 \operatorname{ct?}) \cdot \mathbb{P}[\operatorname{error after } 10 \operatorname{ct?} \mid E] \\ &= \sum_{\sigma \neq 10 \operatorname{ct?}} w(\sigma) \cdot p_{\operatorname{err}}(\sigma) + \\ & w(10 \operatorname{ct?}) \cdot \frac{\left(1 - p_{\operatorname{fail}}(10 \operatorname{ct?})\right)^n \cdot p_{\operatorname{err}}(10 \operatorname{ct?})}{\left(1 - p_{\operatorname{fail}}(10 \operatorname{ct?})\right)^n \cdot p_{\operatorname{err}}(10 \operatorname{ct?}) + \left(1 - p_{\operatorname{err}}(10 \operatorname{ct?})\right)} \end{split}$$

$$risk(T, E) = \mathbb{E}[w(Impl) \mid observe E]$$

Calculation of risk

$$\begin{split} \operatorname{risk}(T,E) &= \operatorname{risk}(\langle\rangle,\langle\rangle) - \\ &\sum_{\sigma \in E} w(\sigma) \cdot \left(p_{\operatorname{err}}(\sigma) - \frac{(1-p_{\operatorname{fail}}(\sigma))^{\operatorname{obs}(\sigma,E)} \cdot p_{\operatorname{err}}(\sigma)}{(1-p_{\operatorname{fail}}(\sigma))^{\operatorname{obs}(\sigma,E)} \cdot p_{\operatorname{err}}(\sigma) + 1 - p_{\operatorname{err}}(\sigma)} \right) \end{split}$$

with $obs(\sigma, E)$ the number of observations in E after σ .

Calculation of risk

$$\begin{split} \operatorname{risk}(T,E) &= \operatorname{risk}(\langle\rangle,\langle\rangle) - \\ &\sum_{\sigma \in E} w(\sigma) \cdot \left(p_{\operatorname{err}}(\sigma) - \frac{(1-p_{\operatorname{fail}}(\sigma))^{\operatorname{obs}(\sigma,E)} \cdot p_{\operatorname{err}}(\sigma)}{(1-p_{\operatorname{fail}}(\sigma))^{\operatorname{obs}(\sigma,E)} \cdot p_{\operatorname{err}}(\sigma) + 1 - p_{\operatorname{err}}(\sigma)} \right) \end{split}$$

with $obs(\sigma, E)$ the number of observations in E after σ .

Although risk $(\langle \rangle, \langle \rangle) = \sum_{\sigma} w(\sigma) \cdot p_{\text{err}}(\sigma)$ seems infinite, it can be calculated smartly:

- w defined by truncation: the sum is already finite
- w defined by discounting: system of linear equations

Other Applications

Optimisations

- Find the optimal test suite of a given size
- Apply history-dependent backwards induction (Markov Decision Theory)

Other Applications

Optimisations

- Find the optimal test suite of a given size
- Apply history-dependent backwards induction (Markov Decision Theory)

Actual Coverage

- Only consider the traces that were actually tested
- Use error probability reduction as coverage measure
- Methods very similar to risk

Limitations and Possibilities

Probabilities might be hard to find, but

- We show what can be calculated, and the required ingredients
- We facilitate sensitivity analysis
- To compute numbers, we have to start with numbers. . .

Limitations and Possibilities

Probabilities might be hard to find, but

- We show what can be calculated, and the required ingredients
- We facilitate sensitivity analysis
- To compute numbers, we have to start with numbers...

It looks like we need many probabilities and weights, but

- The framework can be applied at higher levels of abstraction
- Compute risk based on error / failure probabilities of modules

Conclusions and Future Work

Main results

- Formal notion of risk
- Both evaluation of risk and computation of optimal test suite
- Easily adaptable to be used as a coverage measure

Conclusions and Future Work

Main results

- Formal notion of risk
- Both evaluation of risk and computation of optimal test suite
- Easily adaptable to be used as a coverage measure

Directions for Future Work

- Validation of the framework: tool support, case studies
- Dependencies between errors
- On-the-fly test derivation

Conclusions and Future Work

Main results

- Formal notion of risk
- Both evaluation of risk and computation of optimal test suite
- Easily adaptable to be used as a coverage measure

Directions for Future Work

- Validation of the framework: tool support, case studies
- Dependencies between errors
- On-the-fly test derivation

For more details, see the technical report (http://fmt.cs.utwente.nl/~timmer)

Questions

