QAPL 2013, ROME

On-the-fly Confluence Detection for Statistical Model Checking

very low m no change

 $\iota(S_i) = \nu(s_i) \land (S_i = \{s_i\} \lor \forall s \in S_i\}$

Formal Networks
2 Formal Network
2 Fo

Saarland University, Germany

University of Twente, The Netherlands

On-the-fly Confluence Detection for Statistical Model Checking^{*}

Arnd Hartmanns¹ and Mark Timmer² ¹ Saarland University – Computer Science, Saarbrücken, Germany ² Formal Methods and Tools, University of Twente, The Netherlands

Arnd Hartmanns & Mark Timmer

Statistical Model Checking $^{\text{sMC}}$ SMC = Simulation + Statistics

...confidence intervals, Chernoff-Hoeffding bound, SPRT... error bounds: e.g. result is ϵ -correct with probability δ

- constant memory usage (store only current state) no numeric surprises (e.g. with imprecise arithmetics)
- runtime strongly dependent on desired accuracy

Statistical Model Checking **versus Nondeterminism** MDP models: reset

Simulation

 \Rightarrow need to resolve

nondeterministic choices

 $P \downarrow max (\diamond msg_rcvd) \ge 1$?

Standard technique: implicit uniformly distributed resolution

 \Rightarrow some value $\in [P \downarrow min, P \downarrow max]$

widely implemented: PRISM, UPPAAL, ...

Previous approaches to SMC for MDPs "POR" Partial order reduction-based method:

- Nondeterminism may be **spurious**
 - = irrelevant for the results, i.e. $P \downarrow max = P \downarrow min$
- ⇒ check for spuriousness on-the-fly and ignore
- very low memory overhead no change to SMC error bounds
- spurious interleavings only

Bogdoll, Ferrer Fioriti, H., Hermanns: Partial Order Methods for Statistical Model Checking and Simulation (FMOODS/FORTE 2011)

Arnd Hartmanns & Mark Timmer

Previous approaches to SMC for MDPs

Learning-based method:

Use reinforcement learning to obtain from AI memoryless scheduler using simulation

⇒ use that scheduler for SMC for *Plmax* (*bounded LTL*)

- + works for every MDP
- memory usage to store scheduler no error bounds, converges to actual result only

Henriques, Martins, Zuliani, Platzer, Clarke: Statistical Model Checking for Markov Decision Processes (QEST 2012)

Arnd Hartmanns & Mark Timmer

In this talk: a new method based on **on-the-fly confluence detection**

(MT)

Probabilistic Confluence Adaption to SMC & advantages over POR

On-the-fly Detection (MT) A correct algorithm for use during simulation

Invisible transitions in confluence reduction:

- Deterministic
- Stuttering

Invisible transitions in confluence reduction:

- Deterministic
- Stuttering

Invisible transitions might disable behaviour...

Invisible transitions in confluence reduction:

- Deterministic
- Stuttering

Invisible transitions might disable behaviour...

Invisible transitions in confluence reduction:

- Deterministic
- Stuttering

Invisible transitions might disable behaviour...

Invisible transitions in confluence reduction:

- Deterministic
- Stuttering

Invisible transitions might disable behaviour...

Invisible transitions in confluence reduction:

- Deterministic
- Stuttering

Invisible transitions might disable behaviour...

Invisible transitions in confluence reduction:

- Deterministic
- Stuttering

Invisible transitions might disable behaviour...

Introduction	Confluence	On-the-fly detection	Evaluation	Conclusions
Non-proba	bilistic and	probabilistic	confluence	reduction

denoting a subset of the invisible transitions as confluent.

denoting a subset of the invisible transitions as confluent.

denoting a subset of the invisible transitions as confluent.

denoting a subset of the invisible transitions as confluent.

denoting a subset of the invisible transitions as confluent.

denoting a subset of the invisible transitions as confluent.

denoting a subset of the invisible transitions as confluent.

denoting a subset of the invisible transitions as confluent.

Probabilistically:

denoting a subset of the invisible transitions as confluent.

Probabilistically:

denoting a subset of the invisible transitions as confluent.

Probabilistically:

Introduction	Confluence	On-the-fly detection	Evaluation	Conclusions
Confluenc	e versus F	Partial Order Red	luction	

Partial Order Reduction:

- Preservation of probabilistic $LTL \setminus X$
- Based on independent actions and ample sets
- Ample actions are allowed to be probabilistic

Partial Order Reduction:

- Preservation of probabilistic LTLX (or PCTL *X)
- Based on independent actions and ample sets
- Ample actions are allowed to be probabilistic (or not)

Partial Order Reduction:

- Preservation of probabilistic $LTL \setminus X$ (or $PCTL^* \setminus X$)
- Based on independent actions and ample sets
- Ample actions are allowed to be probabilistic (or not)

Disadvantage: not defined for concrete state spaces

Partial Order Reduction:

- Preservation of probabilistic $LTL \setminus X$ (or $PCTL^* \setminus X$)
- Based on independent actions and ample sets
- Ample actions are allowed to be probabilistic (or not)

Disadvantage: not defined for concrete state spaces

Confluence Reduction:

- Preservation of $PCTL^* \setminus X$
- Based on confluent transitions (commuting diagrams)

Partial Order Reduction:

- Preservation of probabilistic LTLX (or PCTL *X)
- Based on independent actions and ample sets
- Ample actions are allowed to be probabilistic (or not)

Disadvantage: not defined for concrete state spaces

Confluence Reduction:

- Preservation of $PCTL^* \setminus X$
- Based on confluent transitions (commuting diagrams)

Disadvantage: confluent transitions not allowed to be probabilistic

Partial Order Reduction:

- Preservation of probabilistic LTLX (or PCTL *X)
- Based on independent actions and ample sets
- Ample actions are allowed to be probabilistic (or not)

Disadvantage: not defined for concrete state spaces

Confluence Reduction:

- Preservation of $PCTL^* \setminus X$
- Based on confluent transitions (commuting diagrams)

Disadvantage: confluent transitions not allowed to be probabilistic

Relating the notions:

- Confluence reduction subsumes branching-time POR
- Confluence reduction and linear-time POR are incomparable

- Transitions may be mimicked by differently-labelled transitions
- Transitions only have to be invisible locally
- More liberal notion of equivalence of distributions

- Transitions may be mimicked by differently-labelled transitions
- Transitions only have to be invisible locally
- More liberal notion of equivalence of distributions

- Transitions may be mimicked by differently-labelled transitions
- Transitions only have to be invisible locally
- More liberal notion of equivalence of distributions

- Transitions may be mimicked by differently-labelled transitions
- Transitions only have to be invisible locally
- More liberal notion of equivalence of distributions

- Transitions may be mimicked by differently-labelled transitions
- Transitions only have to be invisible locally
- More liberal notion of equivalence of distributions

$$\mu(S_i) = \nu(s_i) \land (S_i = \{s_i\} \lor \forall s \in S_i : \exists a \in \Sigma : s \xrightarrow{a} s_i \in \mathcal{T})$$

$$\mu(S_i) = \nu(s_i) \land (\underline{S_i} = \{\underline{s_i}\} \lor \forall s \in S_i : \exists a \in \Sigma : s \xrightarrow{a} s_i \in \mathcal{T})$$

$$\mu(S_i) = \nu(s_i) \land (S_i = \{s_i\} \lor \forall s \in S_i \ . \ \exists a \in \Sigma \ . \ s \xrightarrow{a} s_i \in \mathcal{T})$$

$$\mu(S_i) = \nu(s_i) \land (S_i = \{s_i\} \lor \forall s \in S_i : \exists a \in \Sigma : s \xrightarrow{a} s_i \in \mathcal{T})$$

$$\{(s,t) \mid s \in \mathsf{spt}(\mu), t \in \mathsf{spt}(
u), s \xrightarrow{a} t \in \mathcal{T}\}$$

Introduction Confluence On-the-fly detection Evaluation Conclusions Correctness of confluence reduction

Even though

- Transitions may be mimicked by differently-labelled transitions
- Transitions only have to be invisible locally
- We have a more liberal notion of equivalence of distributions

Even though

- Transitions may be mimicked by differently-labelled transitions
- Transitions only have to be invisible locally
- We have a more liberal notion of equivalence of distributions

Still we find:

Theorem

Confluent transitions can be given priority, preserving $PCTL_X^*$.

Introduction	Confluence	On-the-fly detection	Evaluation	Conclusions
On-the-fly	/ detection	of confluence		

Simulation using on-the-fly confluence detection:

Simulate until reaching a nondeterministic choice

Simulation using on-the-fly confluence detection:

- Simulate until reaching a nondeterministic choice
- Output Check for each outgoing transition if it is confluent
 - If one choice is confluent, take it and continue
 - If no choice is confluent, abort

Simulation using on-the-fly confluence detection:

- Simulate until reaching a nondeterministic choice
- Output Check for each outgoing transition if it is confluent
 - If one choice is confluent, take it and continue
 - If no choice is confluent, abort

(Possibly, if confluence fails, attempt the same using POR)

Simulation using on-the-fly confluence detection:

- Simulate until reaching a nondeterministic choice
- Output Check for each outgoing transition if it is confluent
 - If one choice is confluent, take it and continue
 - If no choice is confluent, abort

(Possibly, if confluence fails, attempt the same using POR)

To check if a transition is confluent:

• Check if it is invisible

Simulation using on-the-fly confluence detection:

- Simulate until reaching a nondeterministic choice
- Output Check for each outgoing transition if it is confluent
 - If one choice is confluent, take it and continue
 - If no choice is confluent, abort

(Possibly, if confluence fails, attempt the same using POR)

To check if a transition is confluent:

- Check if it is invisible
- Check if all its neighbouring transitions are mimicked
 - For this, additional transitions might need to be confluent

Simulation using on-the-fly confluence detection:

- Simulate until reaching a nondeterministic choice
- Output Check for each outgoing transition if it is confluent
 - If one choice is confluent, take it and continue
 - If no choice is confluent, abort

(Possibly, if confluence fails, attempt the same using POR)

To check if a transition is confluent:

- Check if it is invisible
- Check if all its neighbouring transitions are mimicked
 - For this, additional transitions might need to be confluent

Careful: do not ignore visible behaviour forever (ignoring problem)

• Check if at least once every *I* steps a state is fully expanded

Introduction Confluence On-the-fly detection Evaluation Conclusions Checking a transition for confluence

• Check if *c* is confluent

Check if *c* is confluent
 No; it is not invisible

- Check if *c* is confluent
 No; it is not invisible
- Check if a is confluent

Introduction Confluence On-the-fly detection Evaluation Conclusions Checking a transition for confluence

- Check if *c* is confluent
 No; it is not invisible
- Check if *a* is confluent
 - It is invisible

- Check if *c* is confluent
 - No; it is not invisible
- Check if *a* is confluent
 - It is invisible
 - Is the *c*-transition mimicked?

- Check if *c* is confluent
 - No; it is not invisible
- Check if *a* is confluent
 - It is invisible
 - Is the *c*-transition mimicked?

Conclusions

• Possibly by the *d*-transition

- Check if *c* is confluent
 - No; it is not invisible
- Check if *a* is confluent
 - It is invisible
 - Is the *c*-transition mimicked?

Conclusions

- Possibly by the *d*-transition
- But then *f* has to be confluent: check this

- Check if *c* is confluent
 - No; it is not invisible
- Check if *a* is confluent
 - It is invisible
 - Is the *c*-transition mimicked?

Conclusions

- Possibly by the *d*-transition
- But then *f* has to be confluent: check this

- Check if *c* is confluent
 - No; it is not invisible
- Check if *a* is confluent
 - It is invisible
 - Is the *c*-transition mimicked?

Conclusions

- Possibly by the *d*-transition
- But then *f* has to be confluent: check this

- Check if *c* is confluent
 - No; it is not invisible

Evaluation

Conclusions

- Check if *a* is confluent
 - It is invisible
 - Is the *c*-transition mimicked?
 - Possibly by the *d*-transition
 - But then *f* has to be confluent: check this

• Check if *d* is confluent

Check if *d* is confluent
No; it is not invisible

- Check if *d* is confluent
 - No; it is not invisible
- Check if *b* is confluent

- Check if *d* is confluent
 - No; it is not invisible

- Check if *b* is confluent
 - It is invisible

- Check if *d* is confluent
 - No; it is not invisible
- Check if *b* is confluent
 - It is invisible
 - Is the *d*-transition mimicked?

- Check if *d* is confluent
 - No; it is not invisible
- Check if *b* is confluent
 - It is invisible
 - Is the *d*-transition mimicked?

Conclusions

 Possibly by the *e*-transition

Checking a transition for confluence

Confluence

On-the-fly detection

Introduction

- Check if *d* is confluent
 - No; it is not invisible

Evaluation

- Check if *b* is confluent
 - It is invisible
 - Is the *d*-transition mimicked?
 - Possibly by the *e*-transition
 - But then g has to be confluent: check this

Checking a transition for confluence

Confluence

On-the-fly detection

Introduction

- Check if *d* is confluent
 - No; it is not invisible

Evaluation

- Check if *b* is confluent
 - It is invisible
 - Is the *d*-transition mimicked?
 - Possibly by the *e*-transition
 - But then g has to be confluent: check this
 - It is not; abort

- Check if *d* is confluent
 - No; it is not invisible

Evaluation

- Check if *b* is confluent
 - It is invisible
 - Is the *d*-transition mimicked?
 - Possibly by the *e*-transition
 - But then g has to be confluent: check this
 - It is not; abort

Tool Support

Evaluation

Examples **PRISM Dining Cryptographers** ^{model} N cryptographers, two neighbours each Nondeterminism: communication order

CSMA/CD "DPTA" Two senders, one shared channel, collisions Nondeterministic choice of station inside channel

BEB (Bounded Exponential Backoff)
Detailed MDP model of exponential backoff
K: max. backoff, N: n° of retries, H: n° of hosts
huge state space

Arnd Hartmanns & Mark Timmer

Evaluation

Results	(10000 runs ⇒ε<0.01, δ>0.98)												
	uniform:	partial order:		confluence:				model checking:					
model	params	time	time	k	s	time		k s	c	t	states	time	
1	(3)	$1\mathrm{s}$		_		$3\mathrm{s}$	4	4 9	4.0	8.0	609	$1\mathrm{s}$	
dining	(4)	$1\mathrm{s}$	—	_	_	$11\mathrm{s}$	(6 25	6.0	10.0	3841	$2\mathrm{s}$	
graphers	(5)	$1\mathrm{s}$	_	_	—	$44\mathrm{s}$	ł	8 67	8.0	12.0	23809	$7\mathrm{s}$	
(N) (((6)	$1\mathrm{s}$	—	_	—	$229\mathrm{s}$	1	.0 177	10.0	14.0	144705	$26\mathrm{s}$	
	(7)	$1\mathrm{s}$	—	_	_		- timeout $-$		864257	$80\mathrm{s}$			
	(2, 1)	$2\mathrm{s}$		_	_	$4\mathrm{s}$		3 46	5.4	16.4	15283	$11\mathrm{s}$	
$\mathrm{CSMA/CD}\ (RF, BC_{max})$	(1,1)	$2\mathrm{s}$	—	_	_	$4\mathrm{s}$		3 46	5.4	16.4	30256	$49\mathrm{s}$	
	(2, 2)	$2\mathrm{s}$	—	_	_	$10\mathrm{s}$		3 150	5.1	16.0	98533	$52\mathrm{s}$	
	(1, 2)	$2\mathrm{s}$	_	_	—	$10\mathrm{s}$		3 150	5.1	16.0	194818	$208\mathrm{s}$	
	(4, 3, 3)	$1\mathrm{s}$	$3\mathrm{s}$	3	4	$1\mathrm{s}$		3 7	3.3	11.6	$> 10^{3}$	$>0\mathrm{s}$	Γ
$\begin{array}{c} \text{BEB} \\ (K, N, H) \end{array}$	(8, 7, 4)	$2\mathrm{s}$	$7\mathrm{s}$	4	8	$4\mathrm{s}$	4	4 15	5.6	16.7	$> 10^{7}$	$>7\mathrm{s}$	
	(16, 15, 5)	$3\mathrm{s}$	$18\mathrm{s}$	5	16	$11\mathrm{s}$	ļ	5 31	8.3	21.5	– memo	out –	
	(16, 15, 6)	$3\mathrm{s}$	$40\mathrm{s}$	6	32	$34\mathrm{s}$		6 63	11.2	26.2	– memo	out –	

- performance on BEB
 & CSMA/CD models
 + vs. model-checking
- a bit faster than POR
- does not work well for dining cryptographers

Arnd Hartmanns & Mark Timmer

Conclusion

A new approach to SMC for MDPs based on on-the-fly confluence detection

Germany

becking is an analysis method that circum-

is an analysis meeting enar circumtical methods that provide it can only provide

Netherlands

In verific-

On-the-fly Confluence for Statistical Model Ch

1 Saarland University - Computer Science Saarland University Computer Scient
 Saarland University Tools, University
 Formal Methods and Tools, University

Arnd Hartmanns¹ and Mark

 detect confluence on-the-fly on the concrete state space handle more kinds of nondeterminism than POR method

h	nondeterminism	probabilities	memory	error bounds
	spurious interleavings	<i>P↓max=P↓min</i>	s≪n	unchanged
ce	confluent spurious	<i>P↓max=P↓min</i>	s≪n	unchanged
g	any	<i>P↓max</i> only	$S \rightarrow n$	convergence
	h ce g	h nondeterminism spurious interleavings ce confluent spurious g any	hnondeterminismprobabilitiesspurious interleavings $P \downarrow max = P \downarrow min$ ceconfluent spurious $P \downarrow max = P \downarrow min$ gany $P \downarrow max$ only	hnondeterminismprobabilitiesmemoryspurious interleavings $P \downarrow max = P \downarrow min$ $s \ll n$ ceconfluent spurious $P \downarrow max = P \downarrow min$ $s \ll n$ gany $P \downarrow max$ only $s \rightarrow n$

()n-the

See also www.modestchecker.net

H., T.: On-the-fly Confluence X Detection for Statistical Model Checking (to appear at NFM 2013)

Arnd Hartmanns & Mark Timmer